70 research outputs found

    Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications

    Get PDF
    © The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio

    Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stair climbing up and down is an essential part of everyday's mobility. To enable wheelchair-dependent patients the repetitive practice of this task, a novel gait robot, G-EO-Systems (EO, Lat: I walk), based on the end-effector principle, has been designed. The trajectories of the foot plates are freely programmable enabling not only the practice of simulated floor walking but also stair climbing up and down. The article intended to compare lower limb muscle activation patterns of hemiparetic subjects during real floor walking and stairs climbing up, and during the corresponding simulated conditions on the machine, and secondly to demonstrate gait improvement on single case after training on the machine.</p> <p>Methods</p> <p>The muscle activation pattern of seven lower limb muscles of six hemiparetic patients during free and simulated walking on the floor and stair climbing was measured via dynamic electromyography. A non-ambulatory, sub-acute stroke patient additionally trained on the G-EO-Systems every workday for five weeks.</p> <p>Results</p> <p>The muscle activation patterns were comparable during the real and simulated conditions, both on the floor and during stair climbing up. Minor differences, concerning the real and simulated floor walking conditions, were a delayed (prolonged) onset (duration) of the thigh muscle activation on the machine across all subjects. Concerning stair climbing conditions, the shank muscle activation was more phasic and timely correct in selected patients on the device. The severely affected subject regained walking and stair climbing ability.</p> <p>Conclusions</p> <p>The G-EO-Systems is an interesting new option in gait rehabilitation after stroke. The lower limb muscle activation patterns were comparable, a training thus feasible, and the positive case report warrants further clinical studies.</p

    Non-pollinator fig wasp impact on the reproductive success of an invasive fig tree: why so little?

    Get PDF
    Classical biological control agents fail to achieve an impact on their hosts for a variety of reasons and an understanding of why they fail can help shape decisions on subsequent releases. Ornamental Ficus microcarpa is a widely planted avenue fig tree that is invasive in countries where its pollinator (Eupristina verticillata) is also introduced. This tree also supports more than 20 species of non-pollinating fig wasps (NPFW) that feed in the figs and have the potential to reduce the plant’s reproduction. Odontofroggatia galili, one of the most widely introduced NPFW, has larvae that develop in galled ovules that might otherwise develop into seeds or support pollinator larvae. We examined the distribution and relative abundance of the pollinator and O. galili on F. microcarpa in China, towards the northern limit of the tree’s natural range, and in Italy where the two species have been introduced. Where they co-existed, we also recorded the impact of varying densities of O. galili on F. microcarpa seed and pollinator production. O. galili and E. verticillata displayed contrasting habitat preferences in China, with O. galili almost absent from warmer sites. O. galili abundance and sex ratios varied between the natural and introduced ranges. Figs with more O. galili contained fewer seeds and pollinator offspring, but reproduction was rarely inhibited totally. Additional species with a greater impact in the figs they occupy are needed if biocontrol of F. microcarpa is to be effective

    Species Specificity in Major Urinary Proteins by Parallel Evolution

    Get PDF
    Species-specific chemosignals, pheromones, regulate social behaviors such as aggression, mating, pup-suckling, territory establishment, and dominance. The identity of these cues remains mostly undetermined and few mammalian pheromones have been identified. Genetically-encoded pheromones are expected to exhibit several different mechanisms for coding 1) diversity, to enable the signaling of multiple behaviors, 2) dynamic regulation, to indicate age and dominance, and 3) species-specificity. Recently, the major urinary proteins (Mups) have been shown to function themselves as genetically-encoded pheromones to regulate species-specific behavior. Mups are multiple highly related proteins expressed in combinatorial patterns that differ between individuals, gender, and age; which are sufficient to fulfill the first two criteria. We have now characterized and fully annotated the mouse Mup gene content in detail. This has enabled us to further analyze the extent of Mup coding diversity and determine their potential to encode species-specific cues

    Feline orofacial pain syndrome (FOPS): a retrospective study of 113 cases.

    No full text
    Feline orofacial pain syndrome (FOPS) is a pain disorder of cats with behavioural signs of oral discomfort and tongue mutilation. This report describes the findings from a case series of 113 cats including 100 Burmese. FOPS is suspected to be a neuropathic pain disorder and the predominance within the Burmese cat breed suggests an inherited disorder, possibly involving central and/or ganglion processing of sensory trigeminal information. The disease is characterised by an episodic, typically unilateral, discomfort with pain-free intervals. The discomfort is triggered, in many cases, by mouth movements. The disease is often recurrent and with time may become unremitting - 12% of cases in this series were euthanased as a consequence of the condition. Sensitisation of trigeminal nerve endings as a consequence of oral disease or tooth eruption appears to be an important factor in the aetiology - 63% of cases had a history of oral lesions and at least 16% experienced their first sign of discomfort during eruption of permanent teeth. External factors can also influence the disease as FOPS events could be directly linked to a situation causing anxiety in 20% of cats. FOPS can be resistant to traditional analgesics and in some cases successful management required anti-convulsants with an analgesic effect
    corecore