35 research outputs found

    Inhibition of Hemorragic Snake Venom Components: Old and New Approaches

    Get PDF
    Snake venoms are complex toxin mixtures. Viperidae and Crotalidae venoms, which are hemotoxic, are responsible for most of the envenomations around the world. Administration of antivenins aimed at the neutralization of toxins in humans is prone to potential risks. Neutralization of snake venom toxins has been achieved through different approaches: plant extracts have been utilized in etnomedicine. Direct electric current from low voltage showed neutralizing properties against venom phospholipase A2 and metalloproteases. This mini-review summarizes new achievements in venom key component inhibition. A deeper knowledge of alternative ways to inhibit venom toxins may provide supplemental treatments to serum therapy

    Cell Free DNA of Tumor Origin Induces a 'Metastatic' Expression Profile in HT-29 Cancer Cell Line

    Get PDF
    BACKGROUND: Epithelial cells in malignant conditions release DNA into the extracellular compartment. Cell free DNA of tumor origin may act as a ligand of DNA sensing mechanisms and mediate changes in epithelial-stromal interactions. AIMS: To evaluate and compare the potential autocrine and paracrine regulatory effect of normal and malignant epithelial cell-related DNA on TLR9 and STING mediated pathways in HT-29 human colorectal adenocarcinoma cells and normal fibroblasts. MATERIALS AND METHODS: DNA isolated from normal and tumorous colonic epithelia of fresh frozen surgically removed tissue samples was used for 24 and 6 hour treatment of HT-29 colon carcinoma and HDF-alpha fibroblast cells. Whole genome mRNA expression analysis and qRT-PCR was performed for the elements/members of TLR9 signaling pathway. Immunocytochemistry was performed for epithelial markers (i.e. CK20 and E-cadherin), DNA methyltransferase 3a (DNMT3a) and NFkappaB (for treated HDFalpha cells). RESULTS: Administration of tumor derived DNA on HT29 cells resulted in significant (p/=1, p/=1, p</=0.05), including increased expression of key adaptor molecules of TLR9 pathway (e.g. MYD88, IRAK2, NFkappaB, IL8, IL-1beta), STING pathway (ADAR, IRF7, CXCL10, CASP1) and the FGF2 gene. CONCLUSIONS: DNA from tumorous colon epithelium, but not from the normal epithelial cells acts as a pro-metastatic factor to HT-29 cells through the overexpression of pro-metastatic genes through TLR9/MYD88 independent pathway. In contrast, DNA derived from healthy colonic epithelium induced TLR9 and STING signaling pathway in normal fibroblasts

    What determines age-related disease: do we know all the right questions?

    No full text
    The average human lifespan has increased throughout the last century due to the mitigation of many infectious diseases. More people now die of age-related diseases than ever before, but these diseases have been resistant to elimination. Progress has been made in treatments and preventative measures to delay the onsets of these diseases, but most cancers and vascular diseases are still with us and they kill about the same fraction of the population year after year. For example, US Caucasian female deaths from breast plus genital cancers have remained a fairly constant ~7% of the age-related disease deaths from 1938 to 1998 and have been consistently ~2-fold greater than female colon plus rectal cancer deaths over that span. This type of stability pattern pervades the age-related diseases and suggests that intrinsic properties within populations determine these fractions. Recognizing this pattern and deciphering its origin will be necessary for the complete understanding of these major causes of death. It would appear that more than the random processes of aging drive this effect. The question is how to meaningfully approach this problem. This commentary discusses the epidemiological and aging perspectives and their current limitations in providing an explanation. The age of bioinformatics offers hope, but only if creative systems approaches are forthcoming
    corecore