14 research outputs found

    Ferromagnetic properties of charged vector boson condensate

    Full text link
    Bose-Einstein condensation of W bosons in the early universe is studied. It is shown that, in the broken phase of the standard electroweak theory, condensed W bosons form a ferromagnetic state with aligned spins. In this case the primeval plasma may be spontaneously magnetized inside macroscopically large domains and form magnetic fields which may be seeds for the observed today galactic and intergalactic fields. However, in a modified theory, e.g. in a theory without quartic self interactions of gauge bosons or for a smaller value of the weak mixing angle, antiferromagnetic condensation is possible. In the latter case W bosons form scalar condensate with macroscopically large electric charge density i.e. with a large average value of the bilinear product of W-vector fields but with microscopically small average value of the field itself.Comment: Some numerical estimates and discussions are added according to the referee's suggestions. This version is accepted for publication in JCA

    Kinks in the Hartree approximation

    Full text link
    The topological defects of the lambda phi^4 theory, kink and antikink, are studied in the Hartree approximation. This allows us to discuss quantum effects on the defects in both stationary and dynamical systems. The kink mass is calculated for a number of parameters, and compared to classical, one loop and Monte Carlo results known from the literature. We discuss the thermalization of the system after a kink antikink collision. A classical result, the existence of a critical speed, is rederived and shown for the first time in the quantum theory. We also use kink antikink collisions as a very simple toy model for heavy ion collisions and discuss the differences and similarities, for example in the pressure. Finally, using the Hartree Ensemble Approximation allows us to study kink antikink nucleation starting from a thermal (Bose Einstein) distribution. In general our results indicate that on a qualitative level there are few differences with the classical results, but on a quantitative level there are some import ones.Comment: 20 pages REVTeX 4, 17 Figures. Uses amsmath.sty and subfigure.sty. Final version, fixed typo in published versio

    Semiclassical Study of Baryon and Lepton Number Violation in High-Energy Electroweak Collisions

    Full text link
    We make use of a semiclassical method for calculating the suppression exponent for topology changing transitions in high-energy electroweak collisions. In the Standard Model these processes are accompanied by violation of baryon and lepton number. By using a suitable computational technique we obtain results for s-wave scattering in a large region of initial data. Our results show that baryon and lepton number violation remains exponentially suppressed up to very high energies of at least 30 sphaleron masses (250 TeV). We also conclude that the known analytic approaches inferred from low energy expansion provide reasonably good approximations up to the sphaleron energy (8 TeV) only.Comment: 23 pages, 18 figures. Phys.Rev.D journal version (two references added

    Tachyonic Instability and Dynamics of Spontaneous Symmetry Breaking

    Get PDF
    Spontaneous symmetry breaking usually occurs due to the tachyonic (spinodal) instability of a scalar field near the top of its effective potential at ϕ=0\phi = 0. Naively, one might expect the field ϕ\phi to fall from the top of the effective potential and then experience a long stage of oscillations with amplitude O(v) near the minimum of the effective potential at ϕ=v\phi = v until it gives its energy to particles produced during these oscillations. However, it was recently found that the tachyonic instability rapidly converts most of the potential energy V(0) into the energy of colliding classical waves of the scalar field. This conversion, which was called "tachyonic preheating," is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. In this paper we give a detailed description of tachyonic preheating and show that the dynamics of this process crucially depend on the shape of the effective potential near its maximum. In the simplest models where V(ϕ)m2ϕ2V(\phi) \sim -m^2\phi^2 near the maximum, the process occurs solely due to the tachyonic instability, whereas in the theories λϕn-\lambda\phi^n with n > 2 one encounters a combination of the effects of tunneling, tachyonic instability and bubble wall collisions.Comment: 40 pages, 14 figures, revte

    Towards Jetography

    Full text link
    As the LHC prepares to start taking data, this review is intended to provide a QCD theorist's understanding and views on jet finding at hadron colliders, including recent developments. My hope is that it will serve both as a primer for the newcomer to jets and as a quick reference for those with some experience of the subject. It is devoted to the questions of how one defines jets, how jets relate to partons, and to the emerging subject of how best to use jets at the LHC.Comment: 95 pages, 28 figures, an extended version of lectures given at the CTEQ/MCNET school, Debrecen, Hungary, August 2008; v2 includes additional discussion in several places, as well as other clarifications and additional references

    Skyrmed Monopoles.

    No full text
    We investigate multi-monopole solutions of a modified version of the BPS Yang–Mills–Higgs model in which a term quartic in the covariant derivatives of the Higgs field (a Skyrme term) is included in the Lagrangian. Using numerical methods we find that this modification leads to multi-monopole bound states. We compute axially symmetric monopoles up to charge five and also monopoles with Platonic symmetry for charges three, four and five. The numerical evidence suggests that, in contrast to Skyrmions, the minimal energy Skyrmed monopoles are axially symmetric

    The Newton Polygon Method for Differential Equations

    No full text

    No evidence for large-scale proton ordering in Antarctic ice from powder neutron diffraction

    No full text
    We have examined a sample of 3000 year old Antarctic ice, collected at the Kohnen Station, by time-of-flight powder neutron diffraction to test the hypothesis of Fukazawa et al. [e.g., Ann. Glaciol. 31, 247 (2000)] that such ice may be partially proton ordered. Great care was taken to keep our sample below the proposed ordering temperature (237 K) at all times, but we did not observe any evidence of proton ordering

    Magnetic topology of Co-based inverse opal-like structures

    No full text
    Themagnetic and structural properties of a cobalt inverse opal-like crystal have been studied by a combination of complementary techniques ranging from polarized neutron scattering and superconducting quantum interference device (SQUID) magnetometry to x-ray diffraction. Microradian small-angle x-ray diffraction shows that the inverse opal-like structure (OLS) synthesized by the electrochemical method fully duplicates the threedimensional net of voids of the template artificial opal. The inverse OLS has a face-centered cubic (fcc) structure with a lattice constant of 640 ± 10 nm and with a clear tendency to a random hexagonal close-packed structure along the [111] axes. Wide-angle x-ray powder diffraction shows that the atomic cobalt structure is described by coexistence of 95% hexagonal close-packed and 5% fcc phases. The SQUID measurements demonstrate that the inverse OLS film possesses easy-plane magnetization geometry with a coercive field of 14.0 ± 0.5 mT at room temperature. The detailed picture of the transformation of the magnetic structure under an in-plane applied field was detected with the help of small-angle diffraction of polarized neutrons. In the demagnetized state the magnetic system consists of randomly oriented magnetic domains. A complex magnetic structure appears upon application of the magnetic field, with nonhomogeneous distribution of magnetization density within the unit element of the OLS. This distribution is determined by the combined effect of the easy-plane geometry of the film and the crystallographic geometry of the opal-like structure with respect to the applied field direction

    Structural and magnetic properties of inverse opal photonic crystals studied by x-ray diffraction, scanning electron microscopy, and small-angle neutron scattering

    No full text
    The structural and magnetic properties of nickel inverse opal photonic crystal have been studied by complementary experimental techniques, including scanning electron microscopy, wide-angle and small-angle diffraction of synchrotron radiation, and polarized neutrons. The sample was fabricated by electrochemical deposition of nickel in voids in a colloidal crystal film made of 450 nm polystyrene microspheres followed by their dissolving in toluene. The microradian small-angle diffraction of synchrotron radiation was used to reveal the opal-like large-scale ordering proving its tendency to the face-centered-cubic fcc structure with the lattice constant of 650 10 nm. The wide-angle x-ray powder diffraction has shown that nanosize fcc nickel crystallites, which form an inverse opal framework, have some texture prescribed by principal directions in inverse opal on a macroscale, thus showing that the atomic and macroscopic structures are correlated. The polarized small-angle neutron scattering is used on the extreme limit of its ability to detect the transformation of the magnetic structure under applied field. Different contributions to the neutron scattering have been analyzed: the nonmagnetic nuclear one, the pure magnetic one, and the nuclear-magnetic interference. The latter in the diffraction pattern shows the degree of the spatial correlation between the magnetic and nuclear reflecting planes and gives the pattern behavior of the reversal magnetization process for these planes. The field dependence of pure magnetic contribution shows that the three-dimensional geometrical shape of the structure presumably leads to a complex distribution of the magnetization in the sample
    corecore