987 research outputs found

    γ-Glutamyl carboxylase mutations differentially affect the biological function of vitamin K–dependent proteins

    Get PDF
    γ-Glutamyl carboxylase (GGCX) is an integral membrane protein that catalyzes posttranslational carboxylation of a number of vitamin K–dependent (VKD) proteins involved in a wide variety of physiologic processes, including blood coagulation, vascular calcification, and bone metabolism. Naturally occurring GGCX mutations are associated with multiple distinct clinical phenotypes. However, the genotype–phenotype correlation of GGCX remains elusive. Here, we systematically examined the effect of all naturally occurring GGCX mutations on the carboxylation of 3 structure–function distinct VKD proteins in a cellular environment. GGCX mutations were transiently introduced into GGCX-deficient human embryonic kidney 293 cells stably expressing chimeric coagulation factor, matrix Gla protein (MGP), or osteocalcin as VKD reporter proteins, and then the carboxylation efficiency of these reporter proteins was evaluated. Our results show that GGCX mutations differentially affect the carboxylation of these reporter proteins and the efficiency of using vitamin K as a cofactor. Carboxylation of these reporter proteins by a C-terminal truncation mutation (R704X) implies that GGCX’s C terminus plays a critical role in the binding of osteocalcin but not in the binding of coagulation factors and MGP. This has been confirmed by probing the protein–protein interaction between GGCX and its protein substrates in live cells using bimolecular fluorescence complementation and chemical cross-linking assays. Additionally, using a minigene splicing assay, we demonstrated that several GGCX missense mutations affect GGCX’s pre–messenger RNA splicing rather than altering the corresponding amino acid residues. Results from this study interpreted the correlation of GGCX’s genotype and its clinical phenotypes and clarified why vitamin K administration rectified bleeding disorders but not nonbleeding disorders

    Single-filament Composite MgB2/SUS Ribbons by Powder-In-Tube Process

    Full text link
    We report the successful fabrication of single-filament composite MgB2/SUS ribbons, as an ultra-robust conductor type, employing the powder-in-tube (PIT) process, by swaging and cold rolling only. The remarkable transport critical current (Ic) of the non-sintered MgB2/SUS ribbon has observed, as an unexpected result. Transport critical currents Ic ~ 316 A at T = 4.2 K and Ic ~ 82 A at T = 20 K were observed at self-field, for the non-sintered composite MgB2/SUS ribbon. In addition, the persistent current density Jp values, that were estimated by Bean formula, were more than ~ 7  105 A/cm2 at T = 5 K, and ~ 1.2  105 A/cm2 at T = 30 K, for the sintered composite MgB2/SUS ribbon, at H = 0 G.Comment: 10 pages, 4 figure

    High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture

    Get PDF
    Bi 2 (Li 0.5 Ta 1.5 )O 7 + xBi 2 O 3 (x = 0, 0.01 and 0.02) ceramics were prepared using a solid state reaction method. All compositions were crystallized in a single Bi 2 (Li 0.5 Ta 1.5 )O 7 phase without secondary peaks in X-ray diffraction patterns. Bi 2 (Li 0.5 Ta 1.5 )O 7 ceramics were densified at 1025 °C with a permittivity (Ï” r ) of ∌ 65.1, Q f ∌ 15500 GHz (Q ∌ microwave quality factor; f ∌ resonant frequency; 16780 GHz when annealed in O 2 ) and the temperature coefficient of resonant frequency (TCF) was ∌ -17.5 ppm °C -1 . The sintering temperature was lowered to ∌920 °C by the addition of 2 mol% excess Bi 2 O 3 (Ï” r ∌ 64.1, a Q f ∌ 11200 GHz/11650 GHz when annealed in O 2 and at a TCF of ∌ -19 ppm °C -1 ) with compositions chemically compatible with Ag electrodes. Bi 2 (Li 0.5 Ta 1.5 )O 7 + xBi 2 O 3 are ideal for application as dielectric resonators in 5G mobile base station technology for which ceramics with 60 < Ï” r < 70, high Q f and close to zero TCF are commercially unavailable. They may additionally prove to be useful as high Ï” r and high Q f materials in low temperature co-fired ceramic (LTCC) technology

    Antiferromagnetic Domains and Superconductivity in UPt3

    Full text link
    We explore the response of an unconventional superconductor to spatially inhomogeneous antiferromagnetism (SIAFM). Symmetry allows the superconducting order parameter in the E-representation models for UPt3 to couple directly to the AFM order parameter. The Ginzburg-Landau equations for coupled superconductivity and SIAFM are solved numerically for two possible SIAFM configurations: (I) abutting antiferromagnetic domains of uniform size, and (II) quenched random disorder of `nanodomains' in a uniform AFM background. We discuss the contributions to the free energy, specific heat, and order parameter for these models. Neither model provides a satisfactory account of experiment, but results from the two models differ significantly. Our results demonstrate that the response of an E_{2u} superconductor to SIAFM is strongly dependent on the spatial dependence of AFM order; no conclusion can be drawn regarding the compatibility of E_{2u} superconductivity with UPt3 that is independent of assumptions on the spatial dependence of AFMComment: 12 pages, 13 figures, to appear in Phys. Rev.

    Structure Formation, Melting, and the Optical Properties of Gold/DNA Nanocomposites: Effects of Relaxation Time

    Full text link
    We present a model for structure formation, melting, and optical properties of gold/DNA nanocomposites. These composites consist of a collection of gold nanoparticles (of radius 50 nm or less) which are bound together by links made up of DNA strands. In our structural model, the nanocomposite forms from a series of Monte Carlo steps, each involving reaction-limited cluster-cluster aggregation (RLCA) followed by dehybridization of the DNA links. These links form with a probability peffp_{eff} which depends on temperature and particle radius aa. The final structure depends on the number of monomers (i. e. gold nanoparticles) NmN_m, TT, and the relaxation time. At low temperature, the model results in an RLCA cluster. But after a long enough relaxation time, the nanocomposite reduces to a compact, non-fractal cluster. We calculate the optical properties of the resulting aggregates using the Discrete Dipole Approximation. Despite the restructuring, the melting transition (as seen in the extinction coefficient at wavelength 520 nm) remains sharp, and the melting temperature TMT_M increases with increasing aa as found in our previous percolation model. However, restructuring increases the corresponding link fraction at melting to a value well above the percolation threshold. Our calculated extinction cross section agrees qualitatively with experiments on gold/DNA composites. It also shows a characteristic ``rebound effect,'' resulting from incomplete relaxation, which has also been seen in some experiments. We discuss briefly how our results relate to a possible sol-gel transition in these aggregates.Comment: 12 pages, 10 figure

    Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    Full text link
    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.Comment: 21 pages, 3 figures. In press with Mitigation and Adaptation Strategies for Global Change, Springer, N

    Neutrino Mass from R-parity Violation in Split Supersymmetry

    Full text link
    We investigate how the observed neutrino data can be accommodated by R-parity violation in Split Supersymmetry. The atmospheric neutrino mass and mixing are explained by the bilinear parameters Οi\xi_i inducing the neutrino-neutralino mixing as in the usual low-energy supersymmetry. Among various one-loop corrections, only the quark-squark exchanging diagrams involving the order-one trilinear couplings λi23,i32â€Č\lambda'_{i23,i32} can generate the solar neutrino mass and mixing if the scalar mass mSm_S is not larger than 10910^9 GeV. This scheme requires an unpleasant hierarchical structure of the couplings, e.g., λi23,i32∌1\lambda_{i23,i32}\sim 1, λi33â€Čâ‰Č10−4\lambda'_{i33} \lesssim 10^{-4} and Οiâ‰Č10−6\xi_i \lesssim 10^{-6}. On the other hand, the model has a distinct collider signature of the lightest neutralino which can decay only to the final states, liW(∗)l_i W^{(*)} and ÎœZ(∗)\nu Z^{(*)}, arising from the bilinear mixing. Thus, the measurement of the ratio; Γ(eW(∗)):Γ(ÎŒW(∗)):Γ(τW(∗))\Gamma(e W^{(*)}) : \Gamma(\mu W^{(*)}) : \Gamma(\tau W^{(*)}) would provide a clean probe of the small reactor and large atmospheric neutrino mixing angles as far as the neutralino mass is larger than 62 GeV.Comment: 10 pages, 3 figures, version submitted to JHE

    Crystal structure, impedance and broadband dielectric spectra of ordered scheelite-structured Bi(Sc1/3Mo2/3)O4 ceramic

    Get PDF
    Bi(Sc 1/3 Mo 2/3 )O 4 ceramics were prepared via solid state reaction method. It crystallized with an ordered scheelite-related structure (a = 16.9821(9) Å, b = 11.6097(3) Å, c = 5.3099(3) Å and ÎČ = 104.649(2)°) with a space group C12/C1, in which Bi 3+ , Sc 3+ and Mo 6+ are -8, -6 and -4 coordinated, respectively. Bi(Sc 1/3 Mo 2/3 )O 4 ceramics were densifiedat 915 °C, giving a permittivity (Δ r ) 24.4, quality factor (Qf, Q = 1/dielectric loss, f = resonant frequency) ~48, 100 GHz and temperature coefficient of resonant frequency (TCF) -68 ppm/°C. Impedance spectroscopy revealed that there was only a bulk response for conductivity with activation energy (E a ) ~0.97 eV, suggesting the compound is electrically and chemically homogeneous. Wide band dielectric spectra were employed to study the dielectric response of Bi(Sc 1/3 Mo 2/3 )O 4 from 20 Hz to 30 THz. Δ r was stable from 20 Hz to the GHz region, in which only ionic and electron displacive polarization contributed to the Δ r

    Investigation of scaling effect on power factor of permanent magnet Vernier machines for wind power application

    Get PDF
    This study investigates the scaling effect on power factor of surface mounted permanent magnet Vernier (SPM-V) machines with power ratings ranging from 3 kW, 500 kW, 3 MW to 10 MW. For each power rating, different slot/pole number combinations have been considered to study the influence of key parameters including inter-pole magnet leakage and stator slot leakage on power factor. A detailed analytical modelling, incorporating these key parameters, is presented and validated with two-dimensional finite-element analysis for different power ratings and slot/pole number combinations. The study has revealed that with scaling (increasing power level), significant increase in electrical loading combined with the increased leakage fluxes, i.e. (i) magnet leakage flux due to large coil pitch to rotor pole pitch ratio, (ii) magnet inter-pole leakage flux and (iii) stator slot leakage flux, reduces the ratio of armature flux linkage to permanent magnet flux linkage and thereby has a detrimental effect on the power factor. Therefore, unlike conventional SPM machines, the power factor of SPM-V machines is found to be significantly reduced at high power ratings
    • 

    corecore