33 research outputs found

    Developmental changes in word recognition threshold from two to five years of age in children with different middle ear status

    Get PDF
    The aims were to: (1) provide word recognition thresholds (WRTs) at 31, 43, and 61 months of age; (2) investigate developmental changes over time; (3) investigate the relationship between OME and WRT, and (4) investigate the relationship between WRT and hearing thresholds. Around 1000 children were tested longitudinally as part of the ALSPAC study, using an adaptive measure of word recognition in quiet. Mean WRTs were 28, 23, and 23 dB (A) at 31, 43, and 61 months, respectively. Normal auditory development is associated with a mean improvement in WRT of 5 dB between age 31 and 61 months. There was a mean increase in WRT of 5 dB and 15 dB when OME was present in one and two ears, respectively. Thus, both unilateral and bilateral OME results in a detrimental effect on hearing ability for speech. Additionally, early and ‘persistent’ OME is associated with greater disability. However by 61 months, previous OME status was not significant. To our knowledge, this is the largest longitudinal study reporting WRT in preschool children with different middle ear status

    Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine

    Get PDF
    Coronavirus vaccines that are highly effective against current and anticipated SARS-CoV-2 variants are needed to control COVID-19. We previously reported a receptor-binding domain (RBD)-sortase A-conjugated ferritin nanoparticle (scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected non-human primates (NHPs) from SARS-CoV-2 WA-1 infection. Here, we find the RBD-scNP induced neutralizing antibodies in NHPs against pseudoviruses of SARS-CoV and SARS-CoV-2 variants including 614G, Beta, Delta, Omicron BA.1, BA.2, BA.2.12.1, and BA.4/BA.5, and a designed variant with escape mutations, PMS20. Adjuvant studies demonstrate variant neutralization titers are highest with 3M-052-aqueous formulation (AF). Immunization twice with RBD-scNPs protect NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protect mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect animals from multiple different SARS-related viruses. Such a vaccine could provide broad immunity to SARS-CoV-2 variants

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The invertebrates a new synthesis

    No full text
    Bibl. : setiap bab.Indeksviii, 488 hlm. : il. ; 26 cm
    corecore