12,049 research outputs found

    A New interpretation of MOND based on Mach principle and an Unruh like effect

    Full text link
    A new interpretation is introduced for MOND based on the Sciama's interpretation of Mach principle and an Unruh like effect, in the context of a generalized equivalence principle. It is argued that in a locally accelerated frame with acceleration aa the appearance of a Rindler horizon may give rise to a constant acceleration a0a_0 as the local properties of cosmological horizon or Hubble length. The total gravitational acceleration inside this frame becomes the combination of aa with a0a_0. For a≫a0a\gg a_0, the conventional gravitational mass mgm_g interacts with the dominant acceleration as mgam_g a and application of Sciama's interpretation leads to the standard Newtonian dynamics. For a≪a0a\ll a_0, however, a reduced gravitational mass mˉg\bar{m}_g interacts with the dominant acceleration as mˉga0\bar{m}_g a_0 and the application of Sciama's interpretation on this reduced gravitational mass leads to MOND. This introduces a third proposal for MOND: {\it The modification of gravitational mass}.Comment: 11 pages, throughout revisio

    Stress Dependence of Exciton Relaxation Processes in Cu2O

    Full text link
    A comprehensive study of the exciton relaxation processes in Cu2O has led to some surprises. We find that the ortho-para conversion rate becomes slower at high stress, and that the Auger nonradiative recombination rate increases with stress, with apparently no Auger recombination at zero stress. These results have important consequences for the pursuit of Bose-Einstein condensation of excitons in a harmonic potential.Comment: 10 figures, 1 tabl

    Manufacturing high purity chalcogenide glass

    No full text
    Chalcogenide materials are finding increasing interest as an active material in next generation optical and electronic devices. There wide range of properties, ranging from photosensitivity, ability to host rare earth ions, electrical conductivity, phase change, exceptional optical non-linearity's to name only a few are fueling this interest. Moreover, the ability to synthesize these materials in numerous forms as diverse as 2D monolayers, microspheres, optical fibres, nanowires, thin films as well as bulk glass ingots of over a kilogram in size ensures their application space is vast.We began preparation of chalcogenides, largely based on sulphides, in 1992 and since then have built up an extensive capability for their purification, synthesis and fabrication in various forms. A key aspect of this facility is the ability to process in a flowing atmosphere of hydrogen sulphide which provided the capability of synthesis from elemental, oxide or halide precursors, processing through various chemical vapour deposition reactions as well as post purification. In this talk we describe the range of materials we synthesize highlighting high purity sulphide bulk glass and transition metal di-chalcogenides for electronic applications, crystalline semiconductors for solar cell applications, low power phase change memory devices, switchable metamaterial devices as well as traditional chalcogenides glass and optical fibre

    Laser-induced forward transfer of thermoelectric materials on polymer and glass substrates

    No full text
    Laser-induced forward transfer (LIFT) is a laser-assisted direct write method that has been used to print a range of solids and rheological fluids. The donor that is to be printed is previously deposited onto a transparent support substrate that is usually referred to as a carrier. A highly energetic short-pulsed laser beam imaged through the transparent carrier onto the donor results in the forward transfer of a donor pixel onto a receiver substrate placed either in contact or a few microns apart. Solid films can be transferred with minimal change in their crystal and domain structure via LIFT

    Physicochemical and Microbiological Appearance of Sapera Goat's Milk on Frozen Storage

    Get PDF
    This study aims to examine the effect of the storage time of milk at a temperature of -18? on the chemical, physical and microbiological content due to different storage times. The goat's milk studied was the milk of the Sannen Crossbreed of the Sapera goat. Twenty samples were taken from the milking results on the same day. The design used in this study was a completely randomized design (CRD) with five treatments and four replications. Samples were grouped according to treatment, namely 0d (control) and 10d, 20d, 30d, 40d; stored for 10, 20, 30 and 40 days, respectively. The milk storage process is carried out using a freezer at a temperature of -18?. The physicochemical and microbiological parameters observed were protein, fat, lactose, solid-non-fat (SNF), total solid (TS), specific gravity, pH, total plate count (TPC), and coliform. Evaluation of milk quality is based on the Indonesian National Standard (SNI) and Thai Agricultural Standard (TAS). The results showed that storage time did not significantly affect the components of fat, protein, lactose, total plate count, and coliform (p> 0.05). In milk stored for 40 days, there were differences in the values of SNF, TS, specific gravity, and pH compared to control (p<0.05). In terms of chemical, physical and microbiological quality, Sapera goat's milk stored at -18? for 40 days still complies with SNI and TAS. The process of storing and freezing milk can be an alternative for preservation to ensure the physical and chemical quality of Sapera goat's milk

    Independent component analysis of interictal fMRI in focal epilepsy: comparison with general linear model-based EEG-correlated fMRI

    Get PDF
    The general linear model (GLM) has been used to analyze simultaneous EEG–fMRI to reveal BOLD changes linked to interictal epileptic discharges (IED) identified on scalp EEG. This approach is ineffective when IED are not evident in the EEG. Data-driven fMRI analysis techniques that do not require an EEG derived model may offer a solution in these circumstances. We compared the findings of independent components analysis (ICA) and EEG-based GLM analyses of fMRI data from eight patients with focal epilepsy. Spatial ICA was used to extract independent components (IC) which were automatically classified as either BOLD-related, motion artefacts, EPI-susceptibility artefacts, large blood vessels, noise at high spatial or temporal frequency. The classifier reduced the number of candidate IC by 78%, with an average of 16 BOLD-related IC. Concordance between the ICA and GLM-derived results was assessed based on spatio-temporal criteria. In each patient, one of the IC satisfied the criteria to correspond to IED-based GLM result. The remaining IC were consistent with BOLD patterns of spontaneous brain activity and may include epileptic activity that was not evident on the scalp EEG. In conclusion, ICA of fMRI is capable of revealing areas of epileptic activity in patients with focal epilepsy and may be useful for the analysis of EEG–fMRI data in which abnormalities are not apparent on scalp EEG

    Response of parametrically-driven nonlinear coupled oscillators with application to micro- and nanomechanical resonator arrays

    Full text link
    The response of a coupled array of nonlinear oscillators to parametric excitation is calculated in the weak nonlinear limit using secular perturbation theory. Exact results for small arrays of oscillators are used to guide the analysis of the numerical integration of the model equations of motion for large arrays. The results provide a qualitative explanation for a recent experiment [Buks and Roukes, cond-mat/0008211, to appear in J. MEMS (2002)] involving a parametrically-excited micromechanical resonator array. Future experiments are suggested that could provide quantitative tests of the theoretical predictions.Comment: 27 pages (in preprint format), 8 figure

    Quantum saturation and condensation of excitons in Cu2_2O: a theoretical study

    Full text link
    Recent experiments on high density excitons in Cu2_2O provide evidence for degenerate quantum statistics and Bose-Einstein condensation of this nearly ideal gas. We model the time dependence of this bosonic system including exciton decay mechanisms, energy exchange with phonons, and interconversion between ortho (triplet-state) and para (singlet-state) excitons, using parameters for the excitonic decay, the coupling to acoustic and low-lying optical phonons, Auger recombination, and ortho-para interconversion derived from experiment. The single adjustable parameter in our model is the optical-phonon cooling rate for Auger and laser-produced hot excitons. We show that the orthoexcitons move along the phase boundary without crossing it (i.e., exhibit a ``quantum saturation''), as a consequence of the balance of entropy changes due to cooling of excitons by phonons and heating by the non-radiative Auger two-exciton recombination process. The Auger annihilation rate for para-para collisions is much smaller than that for ortho-para and ortho-ortho collisions, explaining why, under the given experimental conditions, the paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex, figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban
    • …
    corecore