14 research outputs found

    The use of embolic signal detection in multicenter trials to evaluate antiplatelet efficacy: signal analysis and quality control mechanisms in the CARESS (Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic carotid Stenosis) trial

    Get PDF
    <p><b>Background and Purpose:</b> The CARESS (Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic carotid Stenosis) trial proved the effectiveness of the combination of clopidogrel and aspirin compared with aspirin alone in reducing presence and number of microembolic signals (MES) in patients with recently symptomatic carotid stenosis. The present study aimed at installing primary and secondary quality control measures in CARESS because MES evaluation relies on subjective judgment by human experts.</p> <p><b>Methods:</b> As primary quality control, centers participating in CARESS evaluated a reference digital audio tape (DAT) before the study containing both MES and artifacts. Interobserver agreement of classifying signals as MES was expressed as proportions of specific agreement of positive ratings (ps±values). For all DATs included in CARESS (n=300), online number of MES and off-line number of MES read by the central reader were compared using correlation coefficients. As secondary control, a sample of 16 of 300 DATs was cross-validated by another independent reader (post-trial validator).</p> <p><b>Results:</b> For the reference tape, the cumulative ps±value was 0.894 based on 12 of 14 observers. Two observers with very different results improved after a training procedure. Agreement between post-trial validator and central reader was ps+=0.805, indicating very good agreement. Correlation between online evaluation and off-line evaluation of DATs was very good overall (cumulative ρ=0.84; P<0.001).</p> <p><b>Conclusion:</b> Multicenter studies using MES as outcome parameter are feasible. However, primary and secondary quality control procedures are important.</p&gt

    Effect of an antiretroviral regimen containing ritonavir boosted lopinavir on intestinal and hepatic CYP3A, CYP2D6 and P-glycoprotein in HIV-infected patients

    Get PDF
    This study aimed to quantify the inhibition of cytochrome P450 (CYP3A), CYP2D6, and P-glycoprotein in human immunodeficiency virus (HIV)-infected patients receiving an antiretroviral therapy (ART) containing ritonavir boosted lopinavir, and to identify factors influencing ritonavir and lopinavir pharmacokinetics. We measured activities of CYP3A, CYP2D6, and P-glycoprotein in 28 patients before and during ART using a cocktail phenotyping approach. Activities, demographics, and genetic polymorphisms in CYP3A, CYP2D6, and P-glycoprotein were tested as covariates. Oral midazolam clearance (overall CYP3A activity) decreased to 0.19-fold (90% confidence interval (CI), 0.15-0.23), hepatic midazolam clearance and intestinal midazolam availability changed to 0.24-fold (0.20-0.29) and 1.12-fold (1.00-1.26), respectively. In CYP2D6 extensive metabolizers, the plasma ratio AUC(dextromethorphan)/AUC(dextrorphan) increased to 2.92-fold (2.31-3.69). Digoxin area under the curve (AUC)(0-12) (P-glycoprotein activity) increased to 1.81-fold (1.56-2.09). Covariates had no major influence on lopinavir and ritonavir pharmacokinetics. In conclusion, CYP3A, CYP2D6, and P-glycoprotein are profoundly inhibited in patients receiving ritonavir boosted lopinavir. The covariates investigated are not useful for a priori dose selection

    Labile plasma iron levels predict survival in patients with lower-risk myelodysplastic syndromes

    No full text
    Red blood cell transfusions remain one of the cornerstones in supportive care of lower-risk patients with myelodysplastic syndromes. We hypothesized that patients develop oxidant-mediated tissue injury through the formation of toxic iron species, caused either by red blood cell transfusions or by ineffective erythropoiesis. We analyzed serum samples from 100 lower-risk patients with myelodysplastic syndromes at six-month intervals for transferrin saturation, hepcidin-25, growth differentiation factor 15, soluble transferrin receptor, non-transferrin bound iron and labile plasma iron in order to evaluate temporal changes in iron metabolism and the presence of potentially toxic iron species and their impact on survival. Hepcidin levels were low in 34 patients with ringed sideroblasts compared to 66 patients without. Increases of hepcidin and non-transferrin bound iron levels were visible early in follow-up of all transfusion-dependent patient groups. Hepcidin levels significantly decreased over time in transfusion-independent patients with ringed sideroblasts. Increased soluble transferrin receptor levels in transfusion-independent patients with ringed sideroblasts confirmed the presence of ineffective erythropoiesis and suppression of hepcidin production in these patients. Detectable labile plasma iron levels in combination with high transferrin saturation levels occurred almost exclusively in patients with ringed sideroblasts and all transfusiondependent patient groups. Detectable labile plasma iron levels in transfusion-dependent patients without ringed sideroblasts were associated with decreased survival. In conclusion, toxic iron species occurred in all transfusion-dependent patients and in transfusion-independent patients with ringed sideroblasts. Labile plasma iron appeared to be a clinically relevant measure for potential iron toxicity and a prognostic factor for survival in transfusion-dependent patients. © 2018 Ferrata Storti Foundation
    corecore