32 research outputs found

    Y-System and Deformed Thermodynamic Bethe Ansatz

    Full text link
    We introduce a new tool, the Deformed TBA (Deformed Thermodynamic Bethe Ansatz), to analyze the monodromy problem of the cubic oscillator. The Deformed TBA is a system of five coupled nonlinear integral equations, which in a particular case reduces to the Zamolodchikov TBA equation for the 3-state Potts model. Our method generalizes the Dorey-Tateo analysis of the (monomial) cubic oscillator. We introduce a Y-system corresponding to the Deformed TBA and give it an elegant geometric interpretation.Comment: 12 pages. Minor corrections in Section

    Efficient arithmetic on elliptic curves in characteristic 2

    No full text
    International audienceWe present normal forms for elliptic curves over a field of characteristic 2 analogous to Edwards normal form, and determine bases of addition laws, which provide strikingly simple expressions for the group law. We deduce efficient algorithms for point addition and scalar multiplication on these forms. The resulting algorithms apply to any elliptic curve over a field of characteristic 2 with a 4-torsion point, via an isomorphism with one of the normal forms. We deduce algorithms for duplication in time 2M+5S+2mc2M + 5S + 2m_c and for addition of points in time 7M+2S7M + 2S, where MM is the cost of multiplication, SS the cost of squaring , and mcm_c the cost of multiplication by a constant. By a study of the Kummer curves K=E/{±1]}\mathcal{K} = E/\{\pm1]\}, we develop an algorithm for scalar multiplication with point recovery which computes the multiple of a point P with 4M+4S+2mc+mt4M + 4S + 2m_c + m_t per bit where mtm_t is multiplication by a constant that depends on PP

    Elliptic Curve Scalar Multiplication Combining Yao’s Algorithm and Double Bases

    Full text link
    Abstract. In this paper we propose to take one step back in the use of double base number systems for elliptic curve point scalar multiplication. Using a mod-ified version of Yao’s algorithm, we go back from the popular double base chain representation to a more general double base system. Instead of representing an integer k as Pn i=1 2 bi3ti where (bi) and (ti) are two decreasing sequences, we only set a maximum value for both of them. Then, we analyze the efficiency of our new method using different bases and optimal parameters. In particular, we pro-pose for the first time a binary/Zeckendorf representation for integers, providing interesting results. Finally, we provide a comprehensive comparison to state-of-the-art methods, including a large variety of curve shapes and latest point addition formulae speed-ups

    Painleve I, Coverings of the Sphere and Belyi Functions

    Full text link
    The theory of poles of solutions of Painleve-I is equivalent to the Nevanlinna problem of constructing a meromorphic function ramified over five points - counting multiplicities - and without critical points. We construct such meromorphic functions as limit of rational ones. In the case of the tritronquee solution these rational functions are Belyi functions.Comment: 33 pages, many figures. Version 2: minor corrections and minor changes in the bibliograph

    Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves

    Get PDF
    Meloni recently introduced a new type of arithmetic on elliptic curves when adding projective points sharing the same Z-coordinate. This paper presents further co-Z addition formulæ for various point additions on Weierstraß elliptic curves. It explains how the use of conjugate point addition and other implementation tricks allow one to develop efficient scalar multiplication algorithms making use of co-Z arithmetic. Specifically, this paper describes efficient co-Z based versions of Montgomery ladder and Joye’s double-add algorithm. Further, the resulting implementations are protected against a large variety of implementation attacks.Cryptographic Hardware and Embedded Systems, CHES 2010 12th International Workshop, Santa Barbara, USA, August 17-20, 2010. Proceeding

    Curves with many points and multiplication in finite fileds

    No full text
    corecore