1,444 research outputs found

    Ensemble dependence in the Random transverse-field Ising chain

    Get PDF
    In a disordered system one can either consider a microcanonical ensemble, where there is a precise constraint on the random variables, or a canonical ensemble where the variables are chosen according to a distribution without constraints. We address the question as to whether critical exponents in these two cases can differ through a detailed study of the random transverse-field Ising chain. We find that the exponents are the same in both ensembles, though some critical amplitudes vanish in the microcanonical ensemble for correlations which span the whole system and are particularly sensitive to the constraint. This can \textit{appear} as a different exponent. We expect that this apparent dependence of exponents on ensemble is related to the integrability of the model, and would not occur in non-integrable models.Comment: 8 pages, 12 figure

    The Cost of Stability in Coalitional Games

    Get PDF
    A key question in cooperative game theory is that of coalitional stability, usually captured by the notion of the \emph{core}--the set of outcomes such that no subgroup of players has an incentive to deviate. However, some coalitional games have empty cores, and any outcome in such a game is unstable. In this paper, we investigate the possibility of stabilizing a coalitional game by using external payments. We consider a scenario where an external party, which is interested in having the players work together, offers a supplemental payment to the grand coalition (or, more generally, a particular coalition structure). This payment is conditional on players not deviating from their coalition(s). The sum of this payment plus the actual gains of the coalition(s) may then be divided among the agents so as to promote stability. We define the \emph{cost of stability (CoS)} as the minimal external payment that stabilizes the game. We provide general bounds on the cost of stability in several classes of games, and explore its algorithmic properties. To develop a better intuition for the concepts we introduce, we provide a detailed algorithmic study of the cost of stability in weighted voting games, a simple but expressive class of games which can model decision-making in political bodies, and cooperation in multiagent settings. Finally, we extend our model and results to games with coalition structures.Comment: 20 pages; will be presented at SAGT'0

    Percolation in random environment

    Full text link
    We consider bond percolation on the square lattice with perfectly correlated random probabilities. According to scaling considerations, mapping to a random walk problem and the results of Monte Carlo simulations the critical behavior of the system with varying degree of disorder is governed by new, random fixed points with anisotropic scaling properties. For weaker disorder both the magnetization and the anisotropy exponents are non-universal, whereas for strong enough disorder the system scales into an {\it infinite randomness fixed point} in which the critical exponents are exactly known.Comment: 8 pages, 7 figure

    Griffiths-McCoy Singularities in the Random Transverse-Field Ising Spin Chain

    Full text link
    We consider the paramagnetic phase of the random transverse-field Ising spin chain and study the dynamical properties by numerical methods and scaling considerations. We extend our previous work [Phys. Rev. B 57, 11404 (1998)] to new quantities, such as the non-linear susceptibility, higher excitations and the energy-density autocorrelation function. We show that in the Griffiths phase all the above quantities exhibit power-law singularities and the corresponding critical exponents, which vary with the distance from the critical point, can be related to the dynamical exponent z, the latter being the positive root of [(J/h)^{1/z}]_av=1. Particularly, whereas the average spin autocorrelation function in imaginary time decays as [G]_av(t)~t^{-1/z}, the average energy-density autocorrelations decay with another exponent as [G^e]_av(t)~t^{-2-1/z}.Comment: 8 pages RevTeX, 8 eps-figures include

    Random antiferromagnetic quantum spin chains: Exact results from scaling of rare regions

    Full text link
    We study XY and dimerized XX spin-1/2 chains with random exchange couplings by analytical and numerical methods and scaling considerations. We extend previous investigations to dynamical properties, to surface quantities and operator profiles, and give a detailed analysis of the Griffiths phase. We present a phenomenological scaling theory of average quantities based on the scaling properties of rare regions, in which the distribution of the couplings follows a surviving random walk character. Using this theory we have obtained the complete set of critical decay exponents of the random XY and XX models, both in the volume and at the surface. The scaling results are confronted with numerical calculations based on a mapping to free fermions, which then lead to an exact correspondence with directed walks. The numerically calculated critical operator profiles on large finite systems (L<=512) are found to follow conformal predictions with the decay exponents of the phenomenological scaling theory. Dynamical correlations in the critical state are in average logarithmically slow and their distribution show multi-scaling character. In the Griffiths phase, which is an extended part of the off-critical region average autocorrelations have a power-law form with a non-universal decay exponent, which is analytically calculated. We note on extensions of our work to the random antiferromagnetic XXZ chain and to higher dimensions.Comment: 19 pages RevTeX, eps-figures include

    Numerical studies of the two- and three-dimensional gauge glass at low temperature

    Full text link
    We present results from Monte Carlo simulations of the two- and three-dimensional gauge glass at low temperature using the parallel tempering Monte Carlo method. Our results in two dimensions strongly support the transition being at T_c=0. A finite-size scaling analysis, which works well only for the larger sizes and lower temperatures, gives the stiffness exponent theta = -0.39 +/- 0.03. In three dimensions we find theta = 0.27 +/- 0.01, compatible with recent results from domain wall renormalization group studies.Comment: 7 pages, 10 figures, submitted to PR

    Monte Carlo simulations of the four-dimensional XY spin glass at low temperatures

    Full text link
    We report results for simulations of the four-dimensional XY spin glass using the parallel tempering Monte Carlo method at low temperatures for moderate sizes. Our results are qualitatively consistent with earlier work on the three-dimensional gauge glass as well as three- and four-dimensional Edwards-Anderson Ising spin glass. An extrapolation of our results would indicate that large-scale excitations cost only a finite amount of energy in the thermodynamic limit. The surface of these excitations may be fractal, although we cannot rule out a scenario compatible with replica symmetry breaking in which the surface of low-energy large-scale excitations is space filling.Comment: 6 pages, 8 figure

    Properties of the random field Ising model in a transverse magnetic field

    Full text link
    We consider the effect of a random longitudinal field on the Ising model in a transverse magnetic field. For spatial dimension d>2d > 2, there is at low strength of randomness and transverse field, a phase with true long range order which is destroyed at higher values of the randomness or transverse field. The properties of the quantum phase transition at zero temperature are controlled by a fixed point with no quantum fluctuations. This fixed point also controls the classical finite temperature phase transition in this model. Many critical properties of the quantum transition are therefore identical to those of the classical transition. In particular, we argue that the dynamical scaling is activated, i.e, the logarithm of the diverging time scale rises as a power of the diverging length scale

    Nature of the Spin-glass State in the Three-dimensional Gauge Glass

    Full text link
    We present results from simulations of the gauge glass model in three dimensions using the parallel tempering Monte Carlo technique. Critical fluctuations should not affect the data since we equilibrate down to low temperatures, for moderate sizes. Our results are qualitatively consistent with earlier work on the three and four dimensional Edwards-Anderson Ising spin glass. We find that large scale excitations cost only a finite amount of energy in the thermodynamic limit, and that those excitations have a surface whose fractal dimension is less than the space dimension, consistent with a scenario proposed by Krzakala and Martin, and Palassini and Young.Comment: 5 pages, 7 figure

    Some extremal functions in Fourier analysis, III

    Full text link
    We obtain the best approximation in L1(R)L^1(\R), by entire functions of exponential type, for a class of even functions that includes eλxe^{-\lambda|x|}, where λ>0\lambda >0, logx\log |x| and xα|x|^{\alpha}, where 1<α<1-1 < \alpha < 1. We also give periodic versions of these results where the approximating functions are trigonometric polynomials of bounded degree.Comment: 26 pages. Submitte
    corecore