6 research outputs found

    The three-dimensional random field Ising magnet: interfaces, scaling, and the nature of states

    Get PDF
    The nature of the zero temperature ordering transition in the 3D Gaussian random field Ising magnet is studied numerically, aided by scaling analyses. In the ferromagnetic phase the scaling of the roughness of the domain walls, w∌Lζw\sim L^\zeta, is consistent with the theoretical prediction ζ=2/3\zeta = 2/3. As the randomness is increased through the transition, the probability distribution of the interfacial tension of domain walls scales as for a single second order transition. At the critical point, the fractal dimensions of domain walls and the fractal dimension of the outer surface of spin clusters are investigated: there are at least two distinct physically important fractal dimensions. These dimensions are argued to be related to combinations of the energy scaling exponent, Ξ\theta, which determines the violation of hyperscaling, the correlation length exponent Îœ\nu, and the magnetization exponent ÎČ\beta. The value ÎČ=0.017±0.005\beta = 0.017\pm 0.005 is derived from the magnetization: this estimate is supported by the study of the spin cluster size distribution at criticality. The variation of configurations in the interior of a sample with boundary conditions is consistent with the hypothesis that there is a single transition separating the disordered phase with one ground state from the ordered phase with two ground states. The array of results are shown to be consistent with a scaling picture and a geometric description of the influence of boundary conditions on the spins. The details of the algorithm used and its implementation are also described.Comment: 32 pp., 2 columns, 32 figure

    Isotopic Grand Unification with the Inclusion of Gravity (revised version)

    Get PDF
    We introduce a dual lifting of unified gauge theories, the first characterized by the isotopies, which are axiom- preserving maps into broader structures with positive-definite generalized units used for the representation of matter under the isotopies of the Poincare' symmetry, and the second characterized by the isodualities, which are anti-isomorphic maps with negative-definite generalized units used for the representation of antimatter under the isodualities of the Poincare' symmetry. We then submit, apparently for the first time, a novel grand unification with the inclusion of gravity for matter embedded in the generalized positive-definite units of unified gauge theories while gravity for antimatter is embedded in the isodual isounit. We then show that the proposed grand unification provides realistic possibilities for a resolution of the axiomatic incompatibilities between gravitation and electroweak interactions due to curvature, antimatter and the fundamental space-time symmetries.Comment: 20 pages, Latex, revised in various details and with added reference

    Critical aspects of the random-field Ising model

    Get PDF
    We investigate the critical behavior of the three-dimensional random-field Ising model (RFIM) with a Gaussian field distribution at zero temperature. By implementing a computational approach that maps the ground-state of the RFIM to the maximum-flow optimization problem of a network, we simulate large ensembles of disorder realizations of the model for a broad range of values of the disorder strength h and system sizes  = L3, with L ≀ 156. Our averaging procedure outcomes previous studies of the model, increasing the sampling of ground states by a factor of 103. Using well-established finite-size scaling schemes, the fourth-order’s Binder cumulant, and the sample-to-sample fluctuations of various thermodynamic quantities, we provide high-accuracy estimates for the critical field hc, as well as the critical exponents Îœ, ÎČ/Îœ, and ÎłÌ…/Îœ of the correlation length, order parameter, and disconnected susceptibility, respectively. Moreover, using properly defined noise to signal ratios, we depict the variation of the self-averaging property of the model, by crossing the phase boundary into the ordered phase. Finally, we discuss the controversial issue of the specific heat based on a scaling analysis of the bond energy, providing evidence that its critical exponent α ≈ 0−

    Universality aspects of the trimodal random-field Ising model

    No full text
    We investigate the critical properties of the d = 3 random-field Ising model with an equal-weight trimodal distribution at zero temperature. By implementing suitable graph-theoretical algorithms, we compute large ensembles of ground states for several values of the disorder strength h and system sizes up to N = 1283. Using a new approach based on the sample-to-sample fluctuations of the order parameter of the system and proper finite-size scaling techniques we estimate the critical disorder strength hc = 2.747(3) and the critical exponents of the correlation length Μ = 1.34(6) and order parameter ÎČ = 0.016(4). These estimates place the model into the universality class of the corresponding Gaussian random-field Ising model
    corecore