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Abstract. We investigate the critical behavior of the three-dimensional random-field Ising model (RFIM)
with a Gaussian field distribution at zero temperature. By implementing a computational approach that
maps the ground-state of the RFIM to the maximum-flow optimization problem of a network, we sim-
ulate large ensembles of disorder realizations of the model for a broad range of values of the disorder
strength h and system sizes V = L3, with L ≤ 156. Our averaging procedure outcomes previous studies
of the model, increasing the sampling of ground states by a factor of 103. Using well-established finite-
size scaling schemes, the fourth-order’s Binder cumulant, and the sample-to-sample fluctuations of various
thermodynamic quantities, we provide high-accuracy estimates for the critical field hc, as well as the
critical exponents ν, β/ν, and γ̄/ν of the correlation length, order parameter, and disconnected suscepti-
bility, respectively. Moreover, using properly defined noise to signal ratios, we depict the variation of the
self-averaging property of the model, by crossing the phase boundary into the ordered phase. Finally, we
discuss the controversial issue of the specific heat based on a scaling analysis of the bond energy, providing
evidence that its critical exponent α ≈ 0−.

1 Introduction

The RFIM is one of the archetypal disordered sys-
tems [1–3], extensively studied due to its theoretical in-
terest, as well as its close connection to experiments in
hard [4,5] and soft condensed matter systems [6]. Its
beauty is that the mixture of random fields and the stan-
dard Ising model creates rich physics and leaves many
still unanswered problems. The Hamiltonian describing
the model is

H = −J
∑

〈i,j〉
σiσj −

∑

i

hiσi, (1)

where σi = ±1 are Ising spins, J > 0 is the nearest-
neighbor’s ferromagnetic interaction, and hi are indepen-
dent quenched random fields.

The existence of an ordered ferromagnetic phase for
the RFIM, at low temperature and weak disorder, followed
from the seminal discussion of Imry and Ma [1], when the
space dimension is greater than two (d > 2) [7–11]. This
has provided us with a general qualitative agreement on
the sketch of the phase boundary, separating the ordered
ferromagnetic phase from the high-temperature param-
agnetic one. The phase-diagram line separates the two
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phases of the model and intersects the randomness axis
at the critical value of the disorder strength hc, as shown
in Figure 1. Such qualitative sketching has been commonly
used for the RFIM [12–14] and closed form quantitative
expressions are also known from the early mean-field cal-
culations [15–17]. However, it is generally true that the
quantitative aspects of phase diagrams produced by mean-
field treatments provide rather poor approximations.

The criteria for determining the order of the phase
transition and its dependence on the field distribution
have been discussed throughout the years [15–26]. In fact,
different results have been proposed for different field dis-
tributions, like the existence of a tricritical point at the
strong disorder regime of the system, present only in the
bimodal case [15–17,20]. Currently, despite the huge ef-
forts recorded in the literature, a clear picture of the
model’s critical behavior is still lacking. Although the view
that the phase transition of the RFIM is nowadays con-
sidered to be of second order [27–32], the extremely small
value of the exponent β continues to cast some doubts.
Moreover, a rather strong debate exists with regards to
the role of disorder: the available simulations are not able
to settle the question of whether the critical exponents
depend on the particular choice of the distribution for
the random fields, analogously to the mean-field theory
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Fig. 1. Schematic phase diagram and renormalization-group
flow of the RFIM. The solid line separates the ordered ferro-
magnetic (F) and disordered paramagnetic (P) phases. The
black arrow shows the flow to the random fixed-point (R) at
T = 0 and h = hc, marked by the asterisk.

predictions [15–17]. Thus, the whole issue of the model’s
critical behavior, is under intense investigation [27–48].

The scope of the present work is to shed some light
towards this direction by examining several critical fea-
tures of the phase diagram of the RFIM at d = 3. To this
end, we recruit powerful numerical and finite-size scaling
(FSS) techniques in order to obtain accurate numerical
data through extensive simulations. On technical grounds,
we implement optimization methods at zero temperature
(T = 0) combined with a Gaussian distribution of random
fields, given by the formula

P(hi) =
1√

2πh2
exp

(
− h2

i

2h2

)
. (2)

The main advantage of the above distribution is that the
ground state of the system is non-degenerate, so it is suf-
ficient to calculate just one ground state in order to get
the necessary information. Note here that, for cases of dis-
crete distributions, like the bimodal, degeneracy compli-
cates the numerical solution of the system at T = 0, since
one has to sweep over all the possible ground states of the
system [49–53]. On physical grounds, our attempt bene-
fits from classical FSS techniques, and a scaling approach
that involves, on one hand the fourth-order’s Binder cu-
mulant (a common measure of FSS that has been disre-
garded in the study of the RFIM), and on the other hand,
the sample-to-sample fluctuations of the system.

In particular, sample-to-sample fluctuations and the
related issue of self averaging have attracted much inter-
est in the study of disordered systems [54]. Although it
has been known for many years now that for (spin and
regular) glasses there is no self-averaging in the ordered
phase [55], for random ferromagnets such a behavior was
first observed for the RFIM by Dayan et al. [56] and
some years later for the random versions of the Ising and
Ashkin-Teller models [57,58]. Ever since, the subject of
breakdown of self averaging is an important aspect of sev-
eral theoretical and numerical investigations of disordered
spin systems [59–72]. In view of this increasing interest,
we discuss here another successful alternative approach to

the criticality of the RFIM via its sample-to-sample fluc-
tuations at T = 0.

The rest of the paper is organized as follows: in the
next section we describe briefly the numerical approach
and provide all the necessary details of our implementa-
tion. The relevant FSS analysis is presented in Section 3.
In particular, we give refined estimates of the critical dis-
order strength hc and the critical exponent ν using two
completely independent routes: (i) the well-established
FSS of the fourth-order’s Binder cumulant [73]; and (ii)
an approach based on the sample-to-sample fluctuations
of the model. Additionally, we provide estimates for the
magnetic exponent ratios β/ν and γ̄/ν, though the scal-
ing of the order-parameter and disconnected susceptibility
data at the critical field hc. We also investigate the self-
averaging properties of the model, using properly defined
noise to signal ratios of the bond- and field-energy, and
scanning the complete h-regime of the phase diagram well
into the ordered phase of the model. Finally, we discuss
the controversial issue of the specific heat of the RFIM by
studying the scaling behavior of the bond energy at the
proposed critical randomness hc. We synopsize our find-
ings in Section 4.

2 Simulation scheme

As already discussed extensively in the literature (see
Ref. [74] and references therein), the RFIM captures es-
sential features of models in statistical physics that are
controlled by disorder and have frustration. Such systems
show complex energy landscapes due to the presence of
large barriers that separate several meta-stable states.
When such models are studied using simulations mimick-
ing the local dynamics of physical processes, it takes an
extremely long time to encounter the exact ground state.
However, there are cases where efficient methods for find-
ing the ground state can be utilized and, fortunately, the
RFIM is one such case. These methods escape from the
typical direct physical representation of the system, in a
way that extra degrees of freedom are introduced and an
expanded problem is finally solved. By expanding the con-
figuration space and choosing proper dynamics, the al-
gorithm practically avoids the need of overcoming large
barriers that exist in the original physical configuration
space. An attractor state in the expended space is found
in time polynomial in the size of the system and when
the algorithm terminates, the relevant auxiliary fields can
be projected onto a physical configuration, which is the
guaranteed ground state.

The random field is a relevant perturbation at the
pure fixed-point, and the random-field fixed-point is at
T = 0 [7–10]. Hence, the critical behavior is the same
everywhere along the phase boundary of Figure 1, and
we can predict it simply by staying at T = 0 and cross-
ing the phase boundary at h = hc. This is a conve-
nient approach, because we can determine the ground
states of the system exactly using efficient optimiza-
tion algorithms [27,28,32,68,69,75–80] through an exist-
ing mapping of the ground state to the maximum-flow
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optimization problem [81]. A clear advantage of this ap-
proach is the ability to simulate large system sizes and dis-
order ensembles in rather moderate computational times.
We should underline here that, even the most efficient
T > 0 Monte Carlo schemes exhibit extremely slow dy-
namics in the low-temperature phase of these systems
and are upper bounded by linear sizes of the order of
Lmax ≤ 32 [74]. Further advantages of the T = 0 ap-
proach are the absence of statistical errors and equilibra-
tion problems, which, on the contrary, are the two major
drawbacks encountered in the T > 0 simulation of systems
with rough free-energy landscapes [5].

In particular, the application of maximum-flow algo-
rithms to the RFIM is nowadays well established [79].
The most efficient network flow algorithm used to solve
the RFIM is the push-relabel algorithm of Tarjan and
Goldberg [82]. For the interested reader, general proofs
and theorems on the push-relabel algorithm can be found
in standard textbooks [81]. The version of the algorithm
implemented in our study involves a modification pro-
posed by Middleton and co-workers [28,83,84] that re-
moves the source and sink nodes, reducing memory usage
and also clarifying the physical connection [83,84]. The
algorithm starts by assigning an excess xi to each lattice
site i, with xi = hi. Residual capacity variables rij be-
tween neighboring sites are initially set to J . A height
variable ui is then assigned to each node via a global up-
date step. In this global update, the value of ui at each
site in the set T = {j|xj < 0} of negative excess sites is
set to zero. Sites with xi ≥ 0 have ui set to the length of
the shortest path, via edges with positive capacity, from i
to T .

The ground state is found by successively rearranging
the excesses xi, via push operations, and updating the
heights, via relabel operations. When no more pushes or
relabels are possible, a final global update determines the
ground state, so that sites which are path connected by
bonds with rij > 0 to T have σi = −1, while those which
are disconnected from T have σi = 1. A push operation
moves excess from a site i to a lower height neighbor j, if
possible, that is, whenever xi > 0, rij > 0, and uj = ui−1.
In a push, the working variables are modified according to
xi → xi − δ, xj → xj + δ, rij → rij − δ, and rji → rji + δ,
with δ = min(xi, rij). Push operations tend to move the
positive excess towards sites in T . When xi > 0 and no
push is possible, the site is relabelled, with ui increased to
1 + min{j|rij>0} uj . In addition, if a set of highest sites U
become isolated, with ui > uj + 1, for all i ∈ U and all
j /∈ U , the height ui for all i ∈ U is increased to its maxi-
mum value, N , as these sites will always be isolated from
the negative excess nodes. Periodic global updates are of-
ten crucial to the practical speed of the algorithm [83,84].
Following the suggestions of references [28,83,84], we have
also applied global updates here every V relabels, a prac-
tice found to be computationally optimum [32,80,83,84].

Using this scheme we performed large-scale simula-
tions of the RFIM for lattice sizes in the range L ∈ {Lmin−
Lmax}, where Lmin = 24 and Lmax = 156, and disorder
strengths h ∈ [2.0–3.0] with a step δh = 0.02. Finally, for

each pair (L; h) an extensive disorder averaging process
has been undertaken, by sampling over Ns = 50× 103 in-
dependent random-field realizations, much larger than in
previous relevant studies of the model [28,68,69,76,77].

3 Finite-size scaling analysis

As the outcome of the push-relabel algorithm is the spin
configuration of the ground state, we can calculate directly
for a given sample of a lattice with linear size L some
quantities of interest, as the magnetization per spin (i.e.,
the order parameter of the system) via

m = V−1
∑

i

σi. (3)

Taking now the average over different independent dis-
order configurations we may define the sample-averaged
order parameter M = [|m|] (see main panel of Fig. 7),
and also the disconnected susceptibility χdis = V [m2].
Subsequently, the fourth-order’s Binder cumulant is given
by [85]

g(h, L) =
1
2

{
3 − [m4]

[m2]2

}
. (4)

Another physical parameter of interest is the bond en-
ergy per spin that corresponds to the first term of the
Hamiltonian (1), i.e. eJ = −V−1

∑
〈i,j〉 σiσj , and its dis-

order average, defined hereafter as EJ = [eJ]. Similarly,
the disorder-averaged random-field energy per spin (sec-
ond term in Hamiltonian (1)) is defined as Erf .

3.1 Fourth-order’s Binder cumulant

We start the presentation of our analysis with the crossing
and scaling properties of the fourth-order’s Binder cumu-
lant. In Figure 2, we plot the fourth-order’s Binder cumu-
lant (4) as a function of the random-field strength h for
the complete range of the simulated lattice sizes, as shown
by the different colors. Respectively, in the corresponding
inset we show an enlargement of the curves in the field
area around the value h ≈ 2.27, where they are expected
to cross [28]. Indeed, as can be seen from the enlargement,
the curves cross in the area 2.265 ≤ h ≤ 2.28, indicating
that we can apply the well-established FSS procedure, us-
ing the infinite limit-size extrapolation of the crossings of
lattice-size pairs (L1, L2) = (L, 2L) in order to obtain an
estimate of the critical field. Figure 3 illustrates the scal-
ing behavior of these crossings as a function of the inverse
(new) linear size L′ (see definition below). We show five
data points h∗

cross and their relevant errors, obtained after
performing spline interpolations to the cumulant curves,
for the following pairs of lattices: (L1, L2) = (24, 48),
(32, 64), (48, 96), (64, 128), and (78, 156). The notation L′
in the horizontal axis refers to the value L′ = (L1 +L2)/2.
The solid line is a linear fitting extrapolation to L′ → ∞
with a good-quality value of χ2/dof = 0.8 (where dof de-
notes the number of degrees of freedom), which gives the

http://www.epj.org
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Fig. 2. Fourth-order’s Binder cumulant (4) as a function of
the random-field strength h for linear sizes L = 24–156. The
inset is an enlargement of the critical area that shows a clear
crossing of the curves around the expected value hc ≈ 2.27.
The lines are simple guides to the eye.

Fig. 3. Estimation of the critical disorder strength hc via the
infinite limit-size extrapolation of the crossings of the fourth-
order’s Binder cumulant.

estimate hc = 2.2731(7) for the critical field of the d = 3
Gaussian RFIM. This value is a refined estimate of previ-
ous calculations and is in good agreement with very good
estimates in the current literature [28,68,69,76].

At this point we provide a further verification of the
above hc-estimate, together with an independent calcula-
tion of the critical exponent ν of the correlation length, us-
ing again the scaling behavior of the fourth-order’s Binder
cumulant (4). The standard theory of FSS indicates that
the Binder cumulant scales as

g(h, L) = g̃
[
(h − hc)L1/ν

]
, (5)

where the equality is a result of the dimensionless def-
inition of the Binder cumulant. Using a properly chosen
h-axis re-scaling function, the Binder cumulant for all sys-
tem sizes belonging to the same dimension collapses onto
one single master curve. Figure 4 illustrates, using the re-
duced scaling variable (h − hc)L1/ν , the optimum data
collapse of g(h, L) for different system sizes in the range
L = 48–156, obtained for parameters hc = 2.2725 and

Fig. 4. Data collapse of the Binder cumulant for different sys-
tems withe linear sizes in the range L = 48–156. The optimum
collapse is obtained for hc = 2.2725 and ν = 1.375.

ν = 1.375. The resulting value of the critical field hc com-
pares well to the estimate 2.2731(7) of Figure 3 obtained
via the infinite limit-size extrapolation of the crossings of
the same quantity, and the value ν = 1.375 is in excellent
agreement with the widely accepted estimate 1.37(9) [28].

3.2 Sample-to-sample fluctuations

As already discussed in the introduction, the role of
sample-to-sample fluctuations in random spin models has
recently attracted much interest, due to its close connec-
tion with important physical phenomena taking place in
the boundary among the phases of the system. In this sec-
tion we present another successful application of the fluc-
tuations of the RFIM, obtaining at the same time accurate
results for its critical point hc and the correlation-length’s
exponent ν.

At this point, let us start the presentation of our
FSS approach with Figure 5, where we plot the sample-
to-sample fluctuations over disorder of two quantities,
namely the random-field energy per spin Erf (panel (a))
and the disconnected susceptibility χdis (panel (b)). Both
fluctuations are plotted as a function of the disorder
strength h for the complete lattice size-range L = 24–156.
It is clear that, for every lattice size L, these fluctuations
appear to have a maximum value at a certain value of h,
denoted hereafter as h∗

L, that may be considered in the
following as a suitable pseudo-critical disorder strength.
By fitting the data points around the maximum first to a
Gaussian, and subsequently to a fourth-order polynomial
function, we have extracted the values of the peak loca-
tions (h∗

L) by taking the mean value via the two fitting
functions, as well as the corresponding errors. Using now
these values for h∗

L we consider in Figure 6 a simultaneous
power-law fitting attempt of the form

h∗
L = hc + bL−1/ν . (6)

The quality of the fit is fair enough, with a value of
χ2/dof of the order of 0.4, and produces the estimates
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Table 1. Summary of estimates for the critical field hc and typical critical exponents of the d = 3 Gaussian RFIM, as given
in the present and in some of the most comprehensive T > 0 Monte Carlo (MC) and T = 0 ground-state (GS) simulation
studies. The maximum lattice size (Lmax) considered and the number of disorder samples Ns, in units of 102, that corresponds
to this Lmax, are also given for statistical comparison.

Reference Method Lmax Ns × 102 hc ν β/ν γ̄/ν α

[14] MC 32 1 2.23(2) 1.02(6) 0.06(7) 2.84(7)

[27] GS 80 2 2.29(4) 1.19(8) 0.017(9) 2.94(5)

[28] GS 256 20 2.270(4) 1.37(9) 0.011(3) –0.01(9)

[33,34] MC 16 10 1.1(2) 0.00(5) 2.97(5) –0.5(2)

[68,69] GS 96 20 2.282(2) 1.25(2) –0.05(2)

[76] GS 96 38 2.28(1) 1.32(7) –0.63(7)

[77] GS 60 1 2.29(2) 1.1(1) 0.1(1)

This work GS 156 500 2.272(3) 1.38(2) 0.013(1) 2.974(2) –0.09(5)

Fig. 5. Sample-to-sample fluctuations of the field energy VErf

(a) and disconnected susceptibility Vχdis (b) of the Gaussian
RFIM as a function of the disorder strength for various lattice
sizes in the range L = 24–156. Lines are simple guides to the
eye.

hc = 2.270(3) and ν = 1.38(2) for the critical disorder
strength and the correlation length’s exponent. These val-
ues corroborate the previous estimates of Section 3.1 and,
furthermore, compare very well to the most accurate es-
timates of the literature (see Tab. 1 in Sect. 4). The final
value we quote for the critical field is taken as an average
among the two estimations to be hc = 2.272(3).

We note here that our suggestion of choosing these
newly defined pseudo-critical disorder strengths h∗

L as a
proper measure for performing FSS, closely follows the
analogous considerations of Hartmann and Young [76] and
Dukovski and Machta [77], also for the Gaussian RFIM,
and of reference [80] for the RFIM with a trimodal distri-
bution of random fields. The first authors [76] considered

Fig. 6. Simultaneous fitting (6) of the pseudo-critical disorder
strengths h∗

L, obtained from the peak positions of the fluctu-
ations shown in Figure 5. The shared parameters of the two
data sets of the fit are the critical disorder strength hc and the
correlation length’s exponent ν.

pseudo-critical disorder strengths at the values of h at
which a specific-heat-like quantity obtained by numeri-
cally differentiating the bond energy with respect to h
attains its maximum. On the other hand, the authors
of reference [77] identified the pseudo-critical points as
those in the H-h plane (with H a uniform external field),
where three degenerate ground states of the system show
the largest discontinuities in the magnetization. Finally,
in reference [80], the location of the maximum of the
order-parameter’s fluctuations was used in order to probe
the critical properties of the system. It appears that this
method of extracting pseudo-critical points from the max-
ima of some properly defined thermodynamic quantity is
capable of producing very accurate estimates for both the
critical disorder strength and also the correlation length’s
exponent, assuming that its behavior follows the observed
shift behavior of our pseudo-critical disorder strengths h∗

L.
The practice followed in the current paper, employ-

ing the FSS behavior of the peaks of the sample-to-
sample fluctuations of several quantities of physical ori-
gin, was inspired by the intriguing analysis of Efrat and
Schwartz [72]. These authors, studying also the d = 3

http://www.epj.org
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Fig. 7. Order parameter M as a function of the random-field
strength h for all system sizes studied. Lines are simple guides
to the eye. The inset illustrates the FSS behavior of the critical
data.

Fig. 8. The same as in Figure 7, but for the disconnected
susceptibility χdis.

RFIM, showed that the behavior of the sample-to-sample
fluctuations in a disordered system may be turned into a
useful tool that can provide an independent measure to
distinguish between the ordered and disordered phases of
the system. The analysis of Figures 5 and 6 above verifies
their prediction, and the accuracy in the estimation of rel-
evant phase diagram features, like the critical field hc and
the critical exponent ν, consist a clear test in favor of the
overall scheme.

3.3 Magnetic exponent ratios

The goal in this third part of our analysis is the extrac-
tion of accurate estimates for the magnetic exponent ra-
tios β/ν and γ̄/ν, via the scaling of the order parame-
ter M and disconnected susceptibility χdis, respectively.
As we have at hand a high-accuracy estimate of the criti-
cal field, h = 2.272, we follow the standard FSS approach,
i.e., the investigation of the asymptotic approach of the
critical values of M and χdis to L → ∞. The general form
of the order parameter M and disconnected susceptibility
χdis as a function of the random-field strength h is shown
in the main panels of Figures 7 and 8, respectively, for the
complete range of lattice sizes studied. The fitting extrap-
olations of their critical values (at h = hc) are shown in the

corresponding insets, using the typical power-law forms
M(h = hc) ∼ L−β/ν and χdis(h = hc) ∼ Lγ̄/ν . The result-
ing estimates of the magnetic exponent ratios, given also in
the figures, are β/ν = 0.013(1) and γ̄/ν = 2.974(2). This
latter estimate suggests, through the relation η̄ = 4− γ̄/ν,
the value η̄ = 1.026(2) for the critical exponent that de-
scribes the power-law decay of the disconnected correla-
tion function of the RFIM. Overall, both values of β/ν and
γ̄/ν are refinements of previously obtained estimates (see
Tab. 1 for details and a direct comparison among previous
works), and moreover, the value of η̄ is in agreement with
the value η̄ = 1, that can be predicted from elementary
considerations in the ordered phase [56] and the results of
high-temperature series expansions of the RFIM [25,26].

3.4 Self-averaging properties

Following the discussion of Section 3.2, our numerical
studies of disordered systems are carried out near their
critical points using finite samples; each sample is a partic-
ular random realization of the quenched disorder. A mea-
surement of a thermodynamic property, say Z, yields a dif-
ferent value for every sample. In an ensemble of disordered
samples of linear size L the values of Z are distributed
according to a probability distribution. The behavior of
this distribution is directly related to the issue of self-
averaging. In particular, by studying the behavior of the
width of this distribution, one may address qualitatively
the issue of self-averaging, as has already been stressed
by previous authors [57,58,61]. In general, we characterize
the distribution by its average [Z] and also by the relative
variance

RZ =
VZ

[Z]2
=

[Z2] − [Z]2

[Z]2
, (7)

that we employ here to investigate the self-averaging prop-
erties of the RFIM.

In particular, we study the behavior of the ratio RZ ,
in the framework of the two main quantities in this paper,
the random-field energy Erf and the bond energy EJ of the
model. In our T = 0 formalism, we define an h-dependent
formula of RZ , shown in the main panel (Z = Erf) and
inset (Z = EJ) of Figure 9 for three lattice sizes, L = 64,
78, and L = 128, as indicated by the different colors. Our
intention is to identify the variation of this ratio, as we
approach the ordered phase. Although the bond energy
exhibits a maximum in the vicinity of the phase boundary
of each system size (note that the h-value of the maximum
is close to the respective value shown in Fig. 5), as we enter
the ordered phase (h ≤ h∗

L) the ratio REJ goes smoothly to
zero, indicating a restoration of self-averaging (see inset of
Fig. 9). On the other hand, the violation of self-averaging
for the random-field energy, as given by the behavior of
the ratio RErf (main panel of Fig. 9), becomes maximal
in the ordered phase, indicating strong sample-to-sample
fluctuations and non self-averaging behavior, in agreement
with previous studies [56,72]. Let us comment here that,
possible breakdown of self-averaging may be traced back
to situations where the correlation length ξ becomes of
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Fig. 9. Disorder-strength variation of the ratio (7) for Erf

(main panel) and EJ (inset) and three lattice sizes, as indicated
by the different colors in both panels.

the order of the linear size of the system. The usual state
of affairs is that the correlation length diverges just on
the boundary between the ordered and disordered phase
and consequently any break down of self-averaging may be
observed only in the vicinity of the boundary [58,61,72].
However, as Dayan et al. [56] showed, the situation in
the RFIM is quite different: the correlation length is of
order of the linear size of the system everywhere in the
ordered phase and not just at the boundary of the phase,
indicating possible violations of self-averaging also in the
ordered phase, as in the main panel of Figure 9.

3.5 Scaling aspects of the bond energy

The last part of our FSS analysis concerns the controver-
sial issue of the specific heat of the RFIM. The specific
heat of the RFIM can be experimentally measured [86,87]
and is, for sure, of great theoretical importance. Yet, it
is well known that it is one of the most intricate ther-
modynamic quantities to deal with in numerical simula-
tions, even when it comes to pure systems. For the RFIM,
Monte Carlo methods at T > 0 have been used to es-
timate the value of its critical exponent α, but were re-
stricted to rather small systems sizes and have also re-
vealed many serious problems, i.e., severe violations of self
averaging [64,67]. A better picture emerged throughout
the years from T = 0 computations, proposing estimates
of α ≈ 0. However, even by using the same numerical
techniques, but different scaling approaches, some incon-
sistencies have been recorded in the literature. The most
prominent was that of reference [76], where a strongly neg-
ative value of the critical exponent α was estimated. On
the other hand, experiments on random field and diluted
antiferromagnetic systems suggest a clear logarithmic di-
vergence of the specific heat [86,87].

In general, one expects that the finite-temperature
definition of the specific heat C can be extended to
T = 0, with the second derivative of 〈E〉 with respect
to temperature being replaced by the second derivative
of the ground-state energy density Egs with respect to
the random field h [28,76]. The first derivative ∂Egs/∂J

Fig. 10. Disorder-averaged bond energy per spin as a func-
tion of the random-field strength h for all system sizes studied.
Lines are simple guides to the eye. The inset illustrates the
FSS behavior of EJ at the suggested critical value hc = 2.272.

is the bond energy EJ, already defined above (see main
panel of Fig. 10). The general FSS form assumed is
that the singular part of the specific heat Cs behaves as
Cs ∼ Lα/νC̃

[
(h − hc)L1/ν

]
. Thus, one may estimate α by

studying the behavior of EJ at h = hc [28]. The computa-
tion from the behavior of EJ is based on integrating the
above scaling equation up to hc, which gives a dependence

EJ(h = hc) = c1 + c2L
(α−1)/ν , (8)

with ci constants. Alternatively, following the prescription
of [76], one may calculate the second derivative by finite
differences of EJ(h) for values of h near hc and determine α
by fitting to the maximum of the peaks in Cs, which occur
at h∗

L−hc ≈ L−1/ν . However, as already noted in [28], this
latter approach may be more strongly affected by finite-
size corrections, since the peaks in Cs found by numerical
differentiation are somewhat above hc, and furthermore it
is computationally more demanding, since one must have
the values of EJ in a wide and very dense range of h-values.

In the present case, where the critical value hc is
known with good accuracy, the first approach seems to
be more suitable to follow. The numerical data of the
critical bond energy and the relevant FSS analysis are
presented in the inset of Figure 10. The solid line is a
power-law fittings of the form (8) and the estimate for
the exponent ratio (α − 1)/ν is −0.79(5), as also given in
the figure. Using now our estimate ν = 1.38(2), we calcu-
late the critical exponent α of the specific heat, resulting
in an estimate α = −0.09(5), which is fairly compatible
to the experimental scenario of a logarithmic divergence
(α = 0) [86,87]. Finally, from the modified hyper-scaling
relation [9] θ = d−1/ν+(α−1)/ν, and the above estimates
of (α−1)/ν = −0.79(5) and the value ν = 1.38(2), we de-
duce an estimate for the exponent θ = 1.49(3), in good
agreement to the most accurate estimates in the mod-
ern literature, i.e., the values 1.49(3) for the Gaussian
RFIM [28] and 1.469(20) for the experimental analogue
of the RFIM, that is the diluted antifferomagnet in a
field [30].
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4 Synopsis

A summary of hc estimates, as well as of some of the main
critical exponents of the RFIM given in the present, but
also in the most comprehensive numerical studies of the
model, can be found in Table 1. Although, in principle,
by doing some “tricky” modifications on the push-relabel
algorithm one may reach sizes of the order of L = 256 [28],
here, we decided to follow the safe route of upper bound-
ing the simulations to Lmax = 156, which is in any case
larger than all other previous studies of the RFIM (see
Tab. 1), but dedicate our resources to secure sampling over
large ensembles of random-field realizations. We should
note here that, our disorder-averaging procedure has in-
creased the number of ground states by a factor of 103,
thus eliminating possible obscured effects stemming from
deficient disorder averaging and self-averaging violations.
A careful examination of the data of Table 1 indicates that
our scheme enabled us to present higher-quality estimates
for several features of the phase diagram of the RFIM,
i.e., the critical field hc and the critical exponents ν, β/ν,
and γ̄/ν of the correlation length, order parameter, and
disconnected susceptibility, respectively. We believe that
these safe estimates will be useful for further theoretical
and numerical studies of the model, not only at zero, but
also at positive temperatures.

On physical grounds, we have implemented a FSS ap-
proach based on the fourth-order’s Binder cumulant and
the sample-to-sample fluctuations of the model, not con-
sidered explicitly in previous relevant investigations of the
RFIM. The outcome of this analysis indicated that the
fluctuations of the system may be used as an alternative
successful approach to criticality, paving the way to even
more sophisticated studies of disordered systems under
this perspective. Particular interest has been paid to the
self-averaging properties of the model, by presenting nu-
merical evidence in favor of the early prediction regarding
possible violations of self-averaging in the ordered phase
of the RFIM. Furthermore, the controversial issue of the
specific heat of the model has been addressed, via the scal-
ing of the bond energy at the estimated critical field and
accurate values for the critical exponent α of the specific
heat and the violation of hyper-scaling exponent θ have
been proposed, compatible with the experimental scenario
and in good agreement with the current literature.

I. Georgiou acknowledges financial support by Marie Curie
ITN-COMPLOIDS (Grant Agreement No. 234810).
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