11 research outputs found

    First Photoelectron Imaging Studies of Pure Helium Nanodroplets

    No full text
    Rapport DOE ALS Science highlig

    Photoionization Dynamics in Pure Helium Droplets

    Get PDF
    The photoionization and photoelectron spectroscopy of pure He droplets were investigated at photon energies between 24.6 eV (the ionization energy of He) and 28.0 eV. Time-of-flight mass spectra and photoelectron images were obtained at a series of molecular beam source temperatures and pressures to assess the effect of droplet size on the photoionization dynamics. At source temperatures below 16 K, where there is significant production of clusters with more than 104 atoms, the photoelectron images are dominated by fast electrons produced via direct ionization, with a small contribution from very slow electrons with kinetic energies below 1 meV arising from an indirect mechanism. The fast photoelectrons from the droplets have as much as 0.5 eV more kinetic energy than those from atomic He at the same photon energy. This result is interpreted and simulated within the context of a "dimer model", in which one assumes vertical ionization from two nearest-neighbor He atoms to the attractive region of the He2+ potential energy curve. Possible mechanisms for the slow electrons, which were also seen at energies below IE(He), are discussed, including vibrational autoionizaton of Rydberg states comprising an electron weakly bound to the surface of a large HeN+ core

    Selective detection of Isomers with Photoionization mass spectrometry for studies of hydrocarbon flame chemistry

    No full text
    We report the first use of synchrotron radiation, continuously tunable from 8 to 15 eV, for flame-sampling photoionization mass spectrometry (PIMS). Synchrotron radiation offers important advantages over the use of pulsed vacuum ultraviolet lasers for PIMS; these include superior signal-to-noise, soft ionization, and access to photon energies outside the limited tuning ranges of current VUV laser sources. Near-threshold photoionization efficiency measurements were used to determine the absolute concentrations of the allene and propyne isomers of C3H4 in low-pressure laminar ethylene–oxygen and benzene–oxygen flames. Similar measurements of the isomeric composition of C2H4O species in a fuel-rich ethylene–oxygen flame revealed the presence of substantial concentrations of ethenol (vinyl alcohol) and acetaldehyde. Ethenol has not been previously detected in hydrocarbon flames. Absolute photoionization cross sections were measured for ethylene, allene, propyne, and acetaldehyde, using propene as a calibration standard. PIE curves are presented for several additional reaction intermediates prominent in hydrocarbon flames
    corecore