125 research outputs found

    Effective spinless fermions in the strong coupling Kondo model

    Full text link
    Starting from the two-orbital Kondo-lattice model with classical t_2g spins, an effective spinless fermion model is derived for strong Hund coupling J_H with a projection technique. The model is studied by Monte Carlo simulations and analytically using a uniform hopping approximation. The results for the spinless fermion model are in remarkable agreement with those of the original Kondo-lattice model, independent of the carrier concentration, and even for moderate Hund coupling J_H. Phase separation, the phase diagram in uniform hopping approximation, as well as spectral properties including the formation of a pseudo-gap are discussed for both the Kondo-lattice and the effective spinless fermion model in one and three dimensions.Comment: Revtex4, 10 pages, 15 figures, typos correcte

    On the stability of standing matter waves in a trap

    Get PDF
    We discuss excited Bose-condensed states and find the criterion of dynamical stability of a kink-wise state, i.e., a standing matter wave with one nodal plane perpendicular to the axis of a cylindrical trap. The dynamical stability requires a strong radial confinement corresponding to the radial frequency larger than the mean-field interparticle interaction. We address the question of thermodynamic instability related to the presence of excitations with negative energy.Comment: 4 pages, 3 figure

    Superconductivity in the two dimensional Hubbard Model.

    Full text link
    Quasiparticle bands of the two-dimensional Hubbard model are calculated using the Roth two-pole approximation to the one particle Green's function. Excellent agreement is obtained with recent Monte Carlo calculations, including an anomalous volume of the Fermi surface near half-filling, which can possibly be explained in terms of a breakdown of Fermi liquid theory. The calculated bands are very flat around the (pi,0) points of the Brillouin zone in agreement with photoemission measurements of cuprate superconductors. With doping there is a shift in spectral weight from the upper band to the lower band. The Roth method is extended to deal with superconductivity within a four-pole approximation allowing electron-hole mixing. It is shown that triplet p-wave pairing never occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal doping occurs when the van Hove singularity, corresponding to the flat band part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations play an important role in flattening the bands near the Fermi level and in favouring superconductivity. However the mechanism for superconductivity is a local one, in contrast to spin fluctuation exchange models. For reasonable values of the hopping parameter the transition temperature T_c is in the range 10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c) ~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11. Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file, (self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95

    A systematic review of prognostic factors predicting survival in patients with spinal bone metastases

    Get PDF
    Purpose: For the selection of treatment in patients with spinal bone metastases (SBM), survival estimation plays a crucial role to avoid over- and under-treatment. To aid clinicians in this difficult task, several prediction models have been developed, consisting of many different risk factors. The aim of this systematic review was to identify prognostic factors that are associated with survival in patients with SBM to support development of predictive models. Methods: A systematic review was performed with focus on prognostic factors associated with survival in patients with SBM. Two reviewers independently selected studies for inclusion and assessed the risk of bias. A level of evidence synthesis was performed for each prognostic factor. Inter-observer agreement for the risk of bias assessment was determined by the kappa-statistic. Results: After screening, 142 full-text articles were obtained, of which 22 met the eligibility criteria. A total of 43 different prognostic factors were investigated in the included studies, of which 17 were relevant to pre-treatment survival estimation. The prognostic factors most frequently associated with survival were the primary tumor and the performance status. The prognostic factors most frequently not associated with survival were age, gender, number and location of the SBM and the presence of a pathologic fracture. Conclusions: Prognostication for patients with SBM should be based on an accurate primary tumor classification, combined with a performance score. The benefit of adding other prognostic factors is doubtful

    Review article: MHD wave propagation near coronal null points of magnetic fields

    Full text link
    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfven wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfven-speed profile. In a β=0\beta=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfven wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfven wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfven wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note this is a 2011 paper, not a 2010 pape

    Statistical strategies for avoiding false discoveries in metabolomics and related experiments

    Full text link

    Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review

    Full text link

    Muscle reflexes and synergies triggered by an unexpected support surface height during walking.

    No full text
    Contains fulltext : 51500.pdf (publisher's version ) (Closed access)An important phase in the step cycle is foot contact. When the moment of foot contact differs from the one expected, a fast response is needed. Such a mismatch can be caused by hitting a support surface earlier or later than expected. To study this, experiments were performed with healthy young adults who walked on a platform that was unexpectedly at a lowered (5 cm) or at a level height. Glasses blocked the lower visual field. In the unexpectedly lowered trials, the absence of expected heel contact triggered responses in the ipsilateral anti-gravity muscles [ipsilateral medial gastrocnemius (MGi), ipsilateral rectus femoris (RFi)] and contralateral flexor muscles [contralateral tibialis anterior (TAc), contralaterial biceps femoris (BFc)] with latencies of 47-69 ms. After the delayed heel contact, enhanced activity was found in the MGi, RFi, and TAc muscles. This specific muscle synergy was presumably activated to arrest the forward propulsion of the body. In contrast, when the surface was unexpectedly at level height, the subjects expected to step down, and the leg briefly yielded. A muscle synergy was activated at 46-81 ms that flexed the ipsilateral knee (TAi, BFi, RFi) and extended the contralateral one (MGc, BFc) to unload the perturbed leg and delay the contralateral swing phase. Both conditions triggered a fast functionally relevant muscle synergy because of a mismatch between the expected and actual sensory feedback at the moment of foot contact. The results are consistent with an internal model that compares the expected with the actual sensory feedback. The short latency of the response suggests a subcortical, possibly cerebellar pathway
    • …
    corecore