164 research outputs found

    A Model of Fermion Masses and Flavor Mixings with Family Symmetry SU(3)U(1)SU(3)\otimes U(1)

    Full text link
    The family symmetry SU(3)U(1)SU(3)\otimes U(1) is proposed to solve flavor problems about fermion masses and flavor mixings. It's breaking is implemented by some flavon fields at the high-energy scale. In addition a discrete group Z2Z_{2} is introduced to generate tiny neutrino masses, which is broken by a real singlet scalar field at the middle-energy scale. The low-energy effective theory is elegantly obtained after all of super-heavy fermions are integrated out and decoupling. All the fermion mass matrices are regularly characterized by four fundamental matrices and thirteen parameters. The model can perfectly fit and account for all the current experimental data about the fermion masses and flavor mixings, in particular, it finely predicts the first generation quark masses and the values of θ13l\theta^{\,l}_{13} and JCPlJ_{CP}^{\,l} in neutrino physics. All of the results are promising to be tested in the future experiments.Comment: 14 pages, 1 figure, to make a few of corrections to the old version. arXiv admin note: substantial text overlap with arXiv:1011.457

    Search for the Proton Decay Mode proton to neutrino K+ in Soudan 2

    Full text link
    We have searched for the proton decay mode proton to neutrino K+ using the one-kiloton Soudan 2 high resolution calorimeter. Contained events obtained from a 3.56 kiloton-year fiducial exposure through June 1997 are examined for occurrence of a visible K+ track which decays at rest into mu+ nu or pi+ pi0. We found one candidate event consistent with background, yielding a limit, tau/B > 4.3 10^{31} years at 90% CL with no background subtraction.Comment: 13 pages, Latex, 3 tables and 3 figures, Accepted by Physics Letters

    Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur, Nepal

    Get PDF
    Household Air Pollution (HAP) from biomass cooking fuels is a major cause of morbidity and mortality in low-income settings worldwide. In Nepal the use of open stoves with solid biomass fuels is the primary method of domestic cooking. To assess patterns of domestic air pollution we performed continuous measurement of carbon monoxide (CO) and particulate Matter (PM2.5) in 12 biomass fuel households in Janakpur, Nepal. We measured kitchen PM2.5 and CO concentrations at one-minute intervals for an approximately 48-h period using the TSI DustTrak II 8530/SidePak AM510 (TSI Inc, St. Paul MN, USA) or EL-USB-CO data logger (Lascar Electronics, Erie PA, USA) respectively. We also obtained information regarding fuel, stove and kitchen characteristics and cooking activity patterns. Household cooking was performed in two daily sessions (median total duration 4 h) with diurnal variability in pollutant concentrations reflecting morning and evening cooking sessions and peak concentrations associated with fire-lighting. We observed a strong linear relationship between PM2.5 measurements obtained by co-located photometric and gravimetric monitoring devices, providing local calibration factors of 4.9 (DustTrak) and 2.7 (SidePak). Overall 48-h average CO and PM2.5 concentrations were 5.4 (SD 4.3) ppm (12 households) and 417.6 (SD 686.4) μg/m3 (8 households), respectively, with higher average concentrations associated with cooking and heating activities. Overall average PM2.5 concentrations and peak 1-h CO concentrations exceeded WHO Indoor Air Quality Guidelines. Average hourly PM2.5 and CO concentrations were moderately correlated (r = 0.52), suggesting that CO has limited utility as a proxy measure for PM2.5 exposure assessment in this setting. Domestic indoor air quality levels associated with biomass fuel combustion in this region exceed WHO Indoor Air Quality standards and are in the hazardous range for human health

    Non-Perturbative QCD Treatment of High-Energy Hadron-Hadron Scattering

    Full text link
    Total cross-sections and logarithmic slopes of the elastic scattering cross-sections for different hadronic processes are calculated in the framework of the model of the stochastic vacuum. The relevant parameters of this model, a correlation length and the gluon condensate, are determined from scattering data, and found to be in very good agreement with values coming from completely different sources of information. A parameter-free relation is given between total cross-sections and slope parameters, which is shown to be remarkably valid up to the highest energies for which data exist.Comment: 60 pages, Heidelberg preprin
    corecore