63 research outputs found

    Effect of chronic hypoxia on RAGE and its soluble forms in lungs and plasma of mice

    Get PDF
    AbstractThe receptor for advanced glycation end products (RAGE) is a multi-ligand receptor. Alternative splicing and enzymatic shedding produce soluble forms that protect against damage by ligands including Advanced Glycation End products (AGEs). A link between RAGE and oxygen levels is evident from studies showing RAGE-mediated injury following hyperoxia. The effect of hypoxia on pulmonary RAGE expression and circulating sRAGE levels is however unknown. Therefore mice were exposed to chronic hypoxia for 21d and expression of RAGE, sheddases in lungs and circulating sRAGE were determined. In addition, accumulation of AGEs in lungs and expression of the AGE detoxifying enzyme GLO1 and receptors were evaluated.In lung tissue gene expression of total RAGE, variants 1 and 3 were elevated in mice exposed to hypoxia, whereas mRAGE and sRAGE protein levels were decreased. In the hypoxic group plasma sRAGE levels were enhanced. Although the levels of pro-ADAM10 were elevated in lungs of hypoxia exposed mice, the relative amount of the active form was decreased and gelatinase activity unaffected. In the lungs, the RAGE ligand HMGB1 was decreased and of the AGEs, only LW-1 was increased by chronic hypoxia. Gene expression of AGE receptors 2 and 3 was significantly upregulated.Chronic hypoxia is associated with downregulation of pulmonary RAGE protein levels, but a relative increase in sRAGE. These alterations might be part of the adaptive and protective response mechanism to chronic hypoxia and are not associated with AGE formation except for the fluorophore LW-1 which emerges as a novel marker of tissue hypoxia

    More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± standard deviation), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms. © 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Speech Outcome following Late Primary Palate Repair

    No full text

    Pentosidine formation in skin correlates with severity of complications in individuals with long-standing IDDM.

    No full text
    Pentosidine is an advanced glycosylation end product and protein cross- link that results from the reaction of pentoses with proteins. Recent data indicate that long-term glycation of proteins with glucose also leads to pentosidine formation through sugar fragmentation. In this study, the relationship between the severity of diabetic complications and pentosidine formation was investigated in collagen from skin-punch biopsies from 25 nondiabetic control subjects and 41 IDDM patients with diabetes duration >17 yr. Pentosidine was significantly elevated in all IDDM patients versus control subjects (P 0.05). A high correlation between pentosidine levels and long-wave collagen-linked fluorescence also was observed, suggesting that pentosidine is a generalized marker of accelerated tissue modification by the advanced glycosylation/Maillard reaction, which is enhanced in IDDM patients with severe complications

    Advanced Maillard reaction products as markers for tissue damage in diabetes and uraemia: relevance to diabetic nephropathy.

    No full text
    Recent work has led to the structural elucidation of three compounds of the advanced Maillard reaction-pyrraline, pentosidine and carboxymethyllysine-which can serve as markers for in vivo studies. Pyrraline is a glucose-derived compound, the presence of which was detected with a monoclonal antibody in elevated amounts in the plasma of diabetic individuals and rodents and in histological sections of renal tissue, especially in sclerosed glomerular and arteriolar regions. The immediate precursor of pyrraline is 3-deoxyglucosone (3-DG), a product formed through degradation of glycated proteins. 3-DG is present in elevated levels in plasma and urine from diabetic humans. Pentosidine is a pentose-derived protein crosslink, which forms from glycated proteins in the presence of oxygen. Pentosidine increases ubiquitously in aging tissues, and at an accelerated rate in diabetes and especially in uraemia. Skin pentosidine levels correlate with the severity of diabetic complications in type I (insulin-dependent) diabetes. Its levels, like those of carboxymethyllysine, an Amadori fragmentation and oxidation product, are not reversible upon tight control of diabetes over a 4-month period. Assuming these advanced products reflect cumulative glycaemia over several years, it would appear that there is a correlation between the severity of complications and total exposure to glucose

    Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging and uremia.

    No full text
    Pentosidine is an advanced glycosylation end product and protein cross- link that results from the reaction of pentoses with proteins. Recent data indicate that long-term glycation of proteins with glucose also leads to pentosidine formation through sugar fragmentation. In this study, the relationship between the severity of diabetic complications and pentosidine formation was investigated in collagen from skin-punch biopsies from 25 nondiabetic control subjects and 41 IDDM patients with diabetes duration >17 yr. Pentosidine was significantly elevated in all IDDM patients versus control subjects (P 0.05). A high correlation between pentosidine levels and long-wave collagen-linked fluorescence also was observed, suggesting that pentosidine is a generalized marker of accelerated tissue modification by the advanced glycosylation/Maillard reaction, which is enhanced in IDDM patients with severe complications

    Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging and uremia.

    No full text
    Collagen undergoes progressive browning with age and diabetes characterized by yellowing, fluorescence, and cross-linking. The present research was undertaken in order to investigate the nature of the collagen-linked fluorescence. Human collagen was exhaustively cleaved into peptides by enzymatic digestion. Upon purification, a highly fluorescent chromophore was identified and purified from old human collagen. Structure elucidation revealed the presence of an imidazo [4,5-b] pyridinium-type structure acting as a cross-link between arginine, lysine, and a pentose. This advanced glycosylation end-product and protein cross-link results from the reaction of pentoses with proteins and was named pentosidine. Further work indicated that long-term glycosylation of proteins with hexoses also leads to pentosidine formation through sugar fragmentation. The proposed mechanism of pentosidine formation involves the dehydration of the pentose-derived Amadori compound to form an intermediate which is attacked under base catalysis by the guanido group of arginine. The strict requriement for the Amadori rearrangement is uncertain. However, oxidation is definitely involved since pentosidine is not formed in the absence of oxygen. Five-carbon sugars contributing to pentosidine formation could be formed from larger sugars by oxidative fragmentation or from trioses, tetroses, and ketoses by condensation and/or reverse aldol reactions. Pentosidine increases exponentially in human skin at autopsy. Mean age-adjusted skin levels were significantly increased in subjects with uremia and especially in type 1 diabetes with uremia vs. controls. In skin biopsy, levels were significantly elevated in all diabetic (type 1) vs. control subjects. The highest degree of association was with the cumulative grade of diabetic complication (retinopathy, nephropathy, arterial stiffness, and joint stiffness). Pentosidine also forms in various proteins other than collagen, although to a much lesser extent. In blood, pentosidine is mainly associated with plasma proteins and is highly elevated during uremia. In the lens, it is associated with both water-soluble and -insoluble protein fractions and is especially elevated during brunescent cataract formation. The origin of pentosidine in vivo is uncertain. Evidence suggests that the pentoses are the most reactive sugars in pentosidine formation in vitro; however, the origin and importance of free pentoses in vivo, especially during the diabetic state, are not certain. Possible origins include hemolysis and/or a defect in the primary pentose metabolism. The more likely precursors of pentosidine are the hexoses; however, it is unclear whether they undergo oxidative fragmentation to form 5-carbon fragments in vivo. This contrasts with ascorbate, a very likely precursor, known to be oxidized to dehydroascorbate and 2,3-diketoglulonate and to fragment to pentoses in vivo. Pentosidine reflects a form of sugar-mediated cumulative damage to protein which increases with aging, diabetes, and uremia. The determination of pentosidine levels may be a useful marker of aging and the risk of developing diabetic complications. It may also be a biochemical end-point for the assessment of therapeutic interventions aimed at preventing or reversing the progression of diabetic complications
    corecore