966 research outputs found
Differentially Private Exponential Random Graphs
We propose methods to release and analyze synthetic graphs in order to
protect privacy of individual relationships captured by the social network.
Proposed techniques aim at fitting and estimating a wide class of exponential
random graph models (ERGMs) in a differentially private manner, and thus offer
rigorous privacy guarantees. More specifically, we use the randomized response
mechanism to release networks under -edge differential privacy. To
maintain utility for statistical inference, treating the original graph as
missing, we propose a way to use likelihood based inference and Markov chain
Monte Carlo (MCMC) techniques to fit ERGMs to the produced synthetic networks.
We demonstrate the usefulness of the proposed techniques on a real data
example.Comment: minor edit
Thermal Stabilization of the HCP Phase in Titanium
We have used a tight-binding model that is fit to first-principles
electronic-structure calculations for titanium to calculate quasi-harmonic
phonons and the Gibbs free energy of the hexagonal close-packed (hcp) and omega
crystal structures. We show that the true zero-temperature ground-state is the
omega structure, although this has never been observed experimentally at normal
pressure, and that it is the entropy from the thermal population of phonon
states which stabilizes the hcp structure at room temperature. We present the
first completely theoretical prediction of the temperature- and
pressure-dependence of the hcp-omega phase transformation and show that it is
in good agreement with experiment. The quasi-harmonic approximation fails to
adequately treat the bcc phase because the zero-temperature phonons of this
structure are not all stable
Spin-dynamics simulations of the triangular antiferromagnetic XY model
Using Monte Carlo and spin-dynamics methods, we have investigated the dynamic
behavior of the classical, antiferromagnetic XY model on a triangular lattice
with linear sizes . The temporal evolutions of spin configurations
were obtained by solving numerically the coupled equations of motion for each
spin using fourth-order Suzuki-Trotter decompositions of exponential operators.
From space- and time-displaced spin-spin correlation functions and their
space-time Fourier transforms we obtained the dynamic structure factor for momentum and frequency . Below
(Kosterlitz-Thouless transition), both the in-plane () and the
out-of-plane () components of exhibit very strong
and sharp spin-wave peaks. Well above , and
apparently display a central peak, and spin-wave signatures are still seen in
. In addition, we also observed an almost dispersionless domain-wall
peak at high below (Ising transition), where long-range order
appears in the staggered chirality. Above , the domain-wall peak
disappears for all . The lineshape of these peaks is captured reasonably
well by a Lorentzian form. Using a dynamic finite-size scaling theory, we
determined the dynamic critical exponent = 1.002(3). We found that our
results demonstrate the consistency of the dynamic finite-size scaling theory
for the characteristic frequeny and the dynamic structure factor
itself.Comment: 8 pages, RevTex, 10 figures, submitted to PR
Linear Responses in Time-dependent Hartree-Fock-Bogoliubov Method with Gogny Interaction
A numerical method to integrate the time-dependent Hartree-Fock Bogoliubov
(TDHFB) equations with Gogny interaction is proposed. The feasibility of the
TDHFB code is illustrated by the conservation of the energy, particle numbers,
and center-of-mass in the small amplitude vibrations of oxygen 20. The TDHFB
code is applied to the isoscalar quadrupole and/or isovector dipole vibrations
in the linear (small amplitude) region in oxygen isotopes (masses A = 18,20,22
and 24), titanium isotopes (A = 44,50,52 and 54), neon isotope (A = 26), and
magnesium isotopes (A = 24 and 34). The isoscalar quadrupole and isovector
dipole strength functions are calculated from the expectation values of the
isoscalar quadrupole and isovector dipole moments.Comment: 10 pages, 13 figure
The formation of planetary disks and winds: an ultraviolet view
Planetary systems are angular momentum reservoirs generated during star
formation. This accretion process produces very powerful engines able to drive
the optical jets and the molecular outflows. A fraction of the engine energy is
released into heating thus the temperature of the engine ranges from the 3000K
of the inner disk material to the 10MK in the areas where magnetic reconnection
occurs. There are important unsolved problems concerning the nature of the
engine, its evolution and the impact of the engine in the chemical evolution of
the inner disk. Of special relevance is the understanding of the shear layer
between the stellar photosphere and the disk; this layer controls a significant
fraction of the magnetic field building up and the subsequent dissipative
processes ougth to be studied in the UV.
This contribution focus on describing the connections between 1 Myr old suns
and the Sun and the requirements for new UV instrumentation to address their
evolution during this period. Two types of observations are shown to be needed:
monitoring programmes and high resolution imaging down to, at least,
milliarsecond scales.Comment: Accepted for publication in Astrophysics and Space Science 9 figure
Search for the decay in the momentum region
We have searched for the decay in the kinematic
region with pion momentum below the peak. One event was
observed, consistent with the background estimate of . This
implies an upper limit on
(90% C.L.), consistent with the recently measured branching ratio of
, obtained using the standard model
spectrum and the kinematic region above the peak. The
same data were used to search for , where is a weakly
interacting neutral particle or system of particles with .Comment: 4 pages, 2 figure
Reach in and reach out : the story of the MSc in pipeline engineering at Newcastle University
This paper presents an unusual case of university-industry interaction whereby a group of small businesses came together to persuade a university to establish an MSc in Pipeline Engineering. We identify that the course contributed to regional development in four ways. Firstly, it provided graduates for local industry. Secondly, it linked local firms with pipeline engineers world wide and raised the region's profile within that network. Thirdly, it strengthened the research base of the university through the recruitment of pipeline engineers from industry and fourthly, it facilitated the possibility of joint research between the university and local firms. We question whether this model is transferable to other industry sectors/universities. We conclude that this outreach activity has been shaped by the 'reach-in' to the university of the local business community and propose a revised model of university interaction with regional industry. Traditionally universities have been seen as 'reaching out' to regional industry and the collaborations have been viewed as being instigated by the university and often research-based. Our revised model proposes an alternative mechanism whereby collaborations can be instigated by industry and through a teaching-route
Renormalized Path Integral for the Two-Dimensional Delta-Function Interaction
A path-integral approach for delta-function potentials is presented.
Particular attention is paid to the two-dimensional case, which illustrates the
realization of a quantum anomaly for a scale invariant problem in quantum
mechanics. Our treatment is based on an infinite summation of perturbation
theory that captures the nonperturbative nature of the delta-function bound
state. The well-known singular character of the two-dimensional delta-function
potential is dealt with by considering the renormalized path integral resulting
from a variety of schemes: dimensional, momentum-cutoff, and real-space
regularization. Moreover, compatibility of the bound-state and scattering
sectors is shown.Comment: 26 pages. The paper was significantly expanded and numerous equations
were added for the sake of clarity; the main results and conclusions are
unchange
Coherent electron-phonon coupling and polaron-like transport in molecular wires
We present a technique to calculate the transport properties through
one-dimensional models of molecular wires. The calculations include inelastic
electron scattering due to electron-lattice interaction. The coupling between
the electron and the lattice is crucial to determine the transport properties
in one-dimensional systems subject to Peierls transition since it drives the
transition itself. The electron-phonon coupling is treated as a quantum
coherent process, in the sense that no random dephasing due to electron-phonon
interactions is introduced in the scattering wave functions. We show that
charge carrier injection, even in the tunneling regime, induces lattice
distortions localized around the tunneling electron. The transport in the
molecular wire is due to polaron-like propagation. We show typical examples of
the lattice distortions induced by charge injection into the wire. In the
tunneling regime, the electron transmission is strongly enhanced in comparison
with the case of elastic scattering through the undistorted molecular wire. We
also show that although lattice fluctuations modify the electron transmission
through the wire, the modifications are qualitatively different from those
obtained by the quantum electron-phonon inelastic scattering technique. Our
results should hold in principle for other one-dimensional atomic-scale wires
subject to Peierls transitions.Comment: 21 pages, 8 figures, accepted for publication in Phys. Rev. B (to
appear march 2001
A weakly stable algorithm for general Toeplitz systems
We show that a fast algorithm for the QR factorization of a Toeplitz or
Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A.
Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx =
A^Tb, we obtain a weakly stable method for the solution of a nonsingular
Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the
solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further
details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm
- …
