14 research outputs found

    Relationship between natural occurrence of banana streak badnavirus and symptom expression, relative concentration of viral antigen, and yield characteristics of some micropropagated Musa spp

    No full text
    Micropropagated plants of 36 Musa genotypes with diverse genetic backgrounds, including 14 tetraploid plantain (TMPx) and banana (TMBx) hybrids, were evaluated for their response to banana streak badnavirus (BSV) infection under three environments from 1995 to 1997 in Nigeria. The characteristics evaluated were the natural incidence of BSV based on symptoms and virus indexing, relative concentration of BSV antigens in leaf tissues determined by ELISA, and some growth and yield descriptors. Virus occurrence and symptom expression, as well as the relative concentration of BSV antigens, fluctuated greatly between seasons during the cropping cycle, being high during the rainy season and low or negligible during the hot dry season. The natural incidence of plants with symptoms and BSV-infected plants varied between genotypes. Incidence of BSV on most International Institute of Tropical Agriculture (IITA) TMPx hybrids and three Fundación Hondureòa de Investigación Agrìcola (FHIA) hybrids was high in the three environments, with some variation. Most landraces and some FHIA or Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA) hybrids were not BSV-infected under either environment at Onne. However, a few expressed some foliar symptoms at Ibadan and indexed BSV positive. The relative concentration of BSV antigens in leaf samples was also high in most TMPx and some FHIA hybrids, but low in most landraces. While BSV infection had no significant effect on most growth characteristics, it had a highly variable effect on bunch weight loss among the genotypes. There was no relationship between the natural incidence of BSV, concentration of viral antigen and bunch weight loss among the 11 TMPx hybrids, three FHIA hybrids and three plantain landraces. Despite the high natural BSV incidence and the high relative antigen concentration in their leaf tissue, TMPx 548-9, TMPx 2637-49, TMPx 7002-1 and FHIA 21 suffered less than 15% bunch weight loss, and TMPx 548-4 and FHIA 22 suffered no loss. These results suggest that under the conditions specified in this study, these hybrids could be tentatively classified as ‘field tolerant’ to BSV

    Testing a global standard for quantifying species recovery and assessing conservation impact.

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard
    corecore