2,126 research outputs found
Increased plasma markers of oxidative stress are associated with coronary heart disease in males with diabetes mellitus and with 10-year risk in a prospective sample of males
Background: Increased oxidative stress is associated with coronary heart disease (CHD). We examined the association between plasma markers of oxidative stress and CHD in a cross-sectional sample of patients with diabetes and prospective CHD risk in a sample of men predominantly without diabetes.
Methods: Plasma total antioxidant status (TAOS) and the ratio of oxidized LDL (Ox-LDL) to LDL-cholesterol (LDL-C) were determined in a cross-section of 761 Caucasian individuals with diabetes (UDACS study). Plasma TAOS was also determined in 310 baseline samples from a 10-year prospective cohort of 3012 healthy males (NPHSII).
Results: Within UDACS, males with CHD had lower mean (SD) plasma TAOS [no CHD, 43.4 (13.2)%; CHD, 40.3 (13.8)%; P = 0.04]. The prevalence of CHD was higher in the lowest compared with the upper quartiles (32.7% vs 19.7%; P = 0.004). We observed a significant association between plasma Ox-LDL:LDL-C and CHD status [no CHD vs CHD, 16.9 (3.1) vs 19.3 (5.0) units/mmol; P = 0.04], with the prevalence of CHD being higher among men in the upper compared with lower quartiles (18.4% vs 35.1%; P = 0.003). No association was observed in females. In NPHSII, TAOS was lower in those who developed CHD [35.1 (8.0)% vs 37.1 (7.9)%; P = 0.04]. The odds ratio for CHD in the lowest compared with the upper quartile was 1.91 (95% confidence interval, 0.99–3.70; P = 0.04). This remained unchanged after adjustment for classic risk factors.
Conclusions: A cross-sectional and prospective association exists between baseline plasma measures of oxidative stress and CHD risk. The association with prospective CHD risk remained after adjustment for "traditional" risk factors, implying an independent role for oxidative stress in CHD risk
Shake-up Processes in a Low-Density Two-Dimensional Electron Gas: Spin-Dependent Transitions to Higher Hole Landau Levels
A theory of shake-up processes in photoabsorption of an interacting
low-density two-dimensional electron gas (2DEG) in strong magnetic fields is
presented. In these processes, an incident photon creates an electron-hole pair
and, because of Coulomb interactions, simultaneously excites one particle to
higher Landau levels (LL's). In this work, the spectra of correlated charged
spin-singlet and spin-triplet electron-hole states in the first hole LL and
optical transitions to these states (i.e., shake-ups to the first hole LL) are
studied. Our results indicate, in particular, the presence of optically-active
three-particle quasi-discrete states in the exciton continuum that may give
rise to surprisingly sharp Fano resonances in strong magnetic fields. The
relation between shake-ups in photoabsorption of the 2DEG and in the 2D hole
gas (2DHG), and shake-ups of isolated negative X^- and positive X^+ trions are
discussed.Comment: 8 pages, 8 figures. References updated, one figure added (Fig. 6).
Accepted in Phys. Rev.
Far-from-equilibrium quantum many-body dynamics
The theory of real-time quantum many-body dynamics as put forward in Ref.
[arXiv:0710.4627] is evaluated in detail. The formulation is based on a
generating functional of correlation functions where the Keldysh contour is
closed at a given time. Extending the Keldysh contour from this time to a later
time leads to a dynamic flow of the generating functional. This flow describes
the dynamics of the system and has an explicit causal structure. In the present
work it is evaluated within a vertex expansion of the effective action leading
to time evolution equations for Green functions. These equations are applicable
for strongly interacting systems as well as for studying the late-time
behaviour of nonequilibrium time evolution. For the specific case of a bosonic
N-component phi^4 theory with contact interactions an s-channel truncation is
identified to yield equations identical to those derived from the 2PI effective
action in next-to-leading order of a 1/N expansion. The presented approach
allows to directly obtain non-perturbative dynamic equations beyond the widely
used 2PI approximations.Comment: 20 pp., 6 figs; submitted version with added references and typos
corrected
Non-Fermi liquid regime of a doped Mott insulator
We study the doping of a Mott insulator in the presence of quenched
frustrating disorder in the magnetic exchange. A low doping regime
is found, in which the quasiparticle coherent scale is low : with (the ratio of typical exchange to
hopping). In the ``quantum critical regime'' , several
physical quantities display Marginal Fermi Liquid behaviour : NMR relaxation
time , resistivity , optical lifetime
\tau_{opt}^{-1}\propto \omega/\ln(\omega/\epstar) and response functions obey
scaling, e.g. .
In contrast, single-electron properties display stronger deviations from Fermi
liquid theory in this regime with a dependence of the inverse
single-particle lifetime and a decay of the photoemission
intensity. On the basis of this model and of various experimental evidence, it
is argued that the proximity of a quantum critical point separating a glassy
Mott-Anderson insulator from a metallic ground-state is an important ingredient
in the physics of the normal state of cuprate superconductors (particularly the
Zn-doped materials). In this picture the corresponding quantum critical regime
is a ``slushy'' state of spins and holes with slow spin and charge dynamics
responsible for the anomalous properties of the normal state.Comment: 40 pages, RevTeX, including 13 figures in EPS. v2 : minor changes,
some references adde
The Effects of Disorder on the Quantum Hall State
A disorder-averaged Hartree-Fock treatment is used to compute the density of
single particle states for quantum Hall systems at filling factor . It
is found that transport and spin polarization experiments can be simultaneously
explained by a model of mostly short-range effective disorder. The slope of the
transport gap (due to quasiparticles) in parallel field emerges as a result of
the interplay between disorder-induced broadening and exchange, and has
implications for skyrmion localization.Comment: 4 pages, 3 eps figure
Identifying topological edge states in 2D optical lattices using light scattering
We recently proposed in a Letter [Physical Review Letters 108 255303] a novel
scheme to detect topological edge states in an optical lattice, based on a
generalization of Bragg spectroscopy. The scope of the present article is to
provide a more detailed and pedagogical description of the system - the
Hofstadter optical lattice - and probing method. We first show the existence of
topological edge states, in an ultra-cold gas trapped in a 2D optical lattice
and subjected to a synthetic magnetic field. The remarkable robustness of the
edge states is verified for a variety of external confining potentials. Then,
we describe a specific laser probe, made from two lasers in Laguerre-Gaussian
modes, which captures unambiguous signatures of these edge states. In
particular, the resulting Bragg spectra provide the dispersion relation of the
edge states, establishing their chiral nature. In order to make the Bragg
signal experimentally detectable, we introduce a "shelving method", which
simultaneously transfers angular momentum and changes the internal atomic
state. This scheme allows to directly visualize the selected edge states on a
dark background, offering an instructive view on topological insulating phases,
not accessible in solid-state experiments.Comment: 17 pages, 10 figures. Revised and extended version, to appear in EJP
Special Topic for the special issue on "Novel Quantum Phases and Mesoscopic
Physics in Quantum Gases". Extended version of arXiv:1203.124
Vortices and dynamics in trapped Bose-Einstein condensates
I review the basic physics of ultracold dilute trapped atomic gases, with
emphasis on Bose-Einstein condensation and quantized vortices. The hydrodynamic
form of the Gross-Pitaevskii equation (a nonlinear Schr{\"o}dinger equation)
illuminates the role of the density and the quantum-mechanical phase. One
unique feature of these experimental systems is the opportunity to study the
dynamics of vortices in real time, in contrast to typical experiments on
superfluid He. I discuss three specific examples (precession of single
vortices, motion of vortex dipoles, and Tkachenko oscillations of a vortex
array). Other unusual features include the study of quantum turbulence and the
behavior for rapid rotation, when the vortices form dense regular arrays.
Ultimately, the system is predicted to make a quantum phase transition to
various highly correlated many-body states (analogous to bosonic quantum Hall
states) that are not superfluid and do not have condensate wave functions. At
present, this transition remains elusive. Conceivably, laser-induced synthetic
vector potentials can serve to reach this intriguing phase transition.Comment: Accepted for publication in Journal of Low Temperature Physics,
conference proceedings: Symposia on Superfluids under Rotation (Lammi,
Finland, April 2010
Influence of uniaxial tensile stress on the mechanical and piezoelectric properties of short-period ferroelectric superlattice
Tetragonal ferroelectric/ferroelectric BaTiO3/PbTiO3 superlattice under
uniaxial tensile stress along the c axis is investigated from first principles.
We show that the calculated ideal tensile strength is 6.85 GPa and that the
superlattice under the loading of uniaxial tensile stress becomes soft along
the nonpolar axes. We also find that the appropriately applied uniaxial tensile
stress can significantly enhance the piezoelectricity for the superlattice,
with piezoelectric coefficient d33 increasing from the ground state value by a
factor of about 8, reaching 678.42 pC/N. The underlying mechanism for the
enhancement of piezoelectricity is discussed
Sustainable development and hospitality education : employers’ perspectives on the relevance for graduate employability
This paper examines hospitality employers’ perspectives of sustainable development and the implications for hospitality education, particularly graduate employability. An exploratory approach is used in this research where semi-structured interviews were conducted with employers of hospitality graduates. The results established that respondents had mixed understandings of the meaning and relevance of sustainable development. These employers are, however, gradually recognising the value of sustainability for their business. Though it is not currently a priority in terms of a critical employability skill specifically for the hotel sector, related industries seem more mindful of the implications of sustainability credentials. Thus, hospitality educators need to take appropriate actions in subject specific areas where sustainable development is critical to employment opportunities, creating more industry ready graduates who are also globally aware citizens
Superconducting fluctuations and the Nernst effect: A diagrammatic approach
We calculate the contribution of superconducting fluctuations above the
critical temperature to the transverse thermoelectric response
, the quantity central to the analysis of the Nernst effect. The
calculation is carried out within the microscopic picture of BCS, and to linear
order in magnetic field. We find that as , the dominant contribution
to arises from the Aslamazov-Larkin diagrams, and is equal to the
result previously obtained from a stochastic time-dependent Ginzburg-Landau
equation [Ussishkin, Sondhi, and Huse, arXiv:cond-mat/0204484]. We present an
argument which establishes this correspondence for the heat current. Other
microscopic contributions, which generalize the Maki-Thompson and density of
states terms for the conductivity, are less divergent as .Comment: 11 pages, 5 figure
- …
