800 research outputs found
Distributed BLAST in a grid computing context
The Basic Local Alignment Search Tool (BLAST) is one of the best known sequence comparison programs available in bioinformatics. It is used to compare query sequences to a set of target sequences, with the intention of finding similar sequences in the target set. Here, we present a distributed BLAST service which operates over a set of heterogeneous Grid resources and is made available through a Globus toolkit v.3 Grid service. This work has been carried out in the context of the BRIDGES project, a UK e-Science project aimed at providing a Grid based environment for biomedical research. Input consisting of multiple query sequences is partitioned into sub-jobs on the basis of the number of idle compute nodes available and then processed on these in batches. To achieve this, we have implemented our own Java-based scheduler which distributes sub-jobs across an array of resources utilizing a variety of local job scheduling systems
Magnetic Ordering and Superconductivity in the REIrGe (RE = Y, La-Tm, Lu) System
We find that the compounds for RE = Y, La-Dy, crystallize in the tetragonal
Ibam (UCoSi type) structure whereas the compounds for RE = Er-Lu,
crystallize in a new orthorhombic structure with a space group Pmmn. Samples of
HoIrGe were always found to be multiphase. The compounds for RE = Y
to Dy which adopt the Ibam type structure show a metallic resistivity whereas
the compounds with RE = Er, Tm and Lu show an anomalous behavior in the
resistivity with a semiconducting increase in as we go down in
temperature from 300K. Interestingly we had earlier found a positive
temperature coefficient of resistivity for the Yb sample in the same
temperature range. We will compare this behavior with similar observations in
the compounds RERuGe and REBiPt. LaIrGe and
YIrGe show bulk superconductivity below 1.8K and 2.5K respectively.
Our results confirm that CeIrGe shows a Kondo lattice behavior and
undergoes antiferromagnetic ordering below 8.5K. Most of the other compounds
containing magnetic rare-earth elements undergo a single antiferromagnetic
transition at low temperatures (T12K) while GdIrGe,
DyIrGe and NdIrGe show multiple transitions. The
T's for most of the compounds roughly scale with the de Gennes factor.
which suggests that the chief mechanism of interaction leading to the magnetic
ordering of the magnetic moments may be the RKKY interaction.Comment: 25 pages, 16 figure
Quadrupole deformation of deuterons and final state interaction in scattering on tensor polarized deuterons at CEBAF energies
The strength of final state interaction (FSI) between struck proton and
spectator neutron in scattering depends on the alignment of
the deuteron. We study the resulting FSI effects in the tensor analyzing power
in detail and find substantial FSI effects starting at still low missing
momentum p_m \gsim 0.9 fm^{-1}. At larger p_m \gsim 1.5 fm^{-1}, FSI
completely dominates both missing momentum distribution and tensor analyzing
power. We find that to a large extent FSI masks the sensitivity of the tensor
analyzing power to models of the deuteron wave function. For the transversely
polarized deuterons the FSI induced forward-backward asymmetry of the missing
momentum distribution is shown to have a node at precisely the same value of
as the PWIA missing momentum distribution. The position of this node is
not affected by FSI and can be a tool to distinguish experimentally between
different models for the deuteron wave function.Comment: 24 pages, figures available from the authors on reques
Dynamics of the Hubbard model: a general approach by time dependent variational principle
We describe the quantum dynamics of the Hubbard model at semi-classical
level, by implementing the Time-Dependent Variational Principle (TDVP)
procedure on appropriate macroscopic wavefunctions constructed in terms of
su(2)-coherent states. Within the TDVP procedure, such states turn out to
include a time-dependent quantum phase, part of which can be recognized as
Berry's phase. We derive two new semi-classical model Hamiltonians for
describing the dynamics in the paramagnetic, superconducting, antiferromagnetic
and charge density wave phases and solve the corresponding canonical equations
of motion in various cases. Noticeably, a vortex-like ground state phase
dynamics is found to take place for U>0 away from half filling. Moreover, it
appears that an oscillatory-like ground state dynamics survives at the Fermi
surface at half-filling for any U. The low-energy dynamics is also exactly
solved by separating fast and slow variables. The role of the time-dependent
phase is shown to be particularly interesting in the ordered phases.Comment: ReVTeX file, 38 pages, to appear on Phys. Rev.
Exceptional Collections and del Pezzo Gauge Theories
Stacks of D3-branes placed at the tip of a cone over a del Pezzo surface
provide a way of geometrically engineering a small but rich class of
gauge/gravity dualities. We develop tools for understanding the resulting
quiver gauge theories using exceptional collections. We prove two important
results for a general quiver gauge theory: 1) we show the ordering of the nodes
can be determined up to cyclic permutation and 2) we derive a simple formula
for the ranks of the gauge groups (at the conformal point) in terms of the
numbers of bifundamentals. We also provide a detailed analysis of four node
quivers, examining when precisely mutations of the exceptional collection are
related to Seiberg duality.Comment: 26 pages, 1 figure; v2 footnote 2 amended; v3 ref adde
Dibaryons from Exceptional Collections
We discuss aspects of the dictionary between brane configurations in del
Pezzo geometries and dibaryons in the dual superconformal quiver gauge
theories. The basis of fractional branes defining the quiver theory at the
singularity has a K-theoretic dual exceptional collection of bundles which can
be used to read off the spectrum of dibaryons in the weakly curved dual
geometry. Our prescription identifies the R-charge R and all baryonic U(1)
charges Q_I with divisors in the del Pezzo surface without any Weyl group
ambiguity. As one application of the correspondence, we identify the cubic
anomaly tr R Q_I Q_J as an intersection product for dibaryon charges in large-N
superconformal gauge theories. Examples can be given for all del Pezzo surfaces
using three- and four-block exceptional collections. Markov-type equations
enforce consistency among anomaly equations for three-block collections.Comment: 47 pages, 11 figures, corrected ref
High Energy QCD: Stringy Picture from Hidden Integrability
We discuss the stringy properties of high-energy QCD using its hidden
integrability in the Regge limit and on the light-cone. It is shown that
multi-colour QCD in the Regge limit belongs to the same universality class as
superconformal =2 SUSY YM with at the strong coupling
orbifold point. The analogy with integrable structure governing the low energy
sector of =2 SUSY gauge theories is used to develop the brane picture
for the Regge limit. In this picture the scattering process is described by a
single M2 brane wrapped around the spectral curve of the integrable spin chain
and unifying hadrons and reggeized gluons involved in the process. New
quasiclassical quantization conditions for the complex higher integrals of
motion are suggested which are consistent with the duality of the
multi-reggeon spectrum. The derivation of the anomalous dimensions of the
lowest twist operators is formulated in terms of the Riemann surfacesComment: 37 pages, 3 figure
Strangeness Enhancement in and Interactions at SPS Energies
The systematics of strangeness enhancement is calculated using the HIJING and
VENUS models and compared to recent data on , and
collisions at CERN/SPS energies (). The HIJING model is used to
perform a {\em linear} extrapolation from to . VENUS is used to
estimate the effects of final state cascading and possible non-conventional
production mechanisms. This comparison shows that the large enhancement of
strangeness observed in collisions, interpreted previously as possible
evidence for quark-gluon plasma formation, has its origins in non-equilibrium
dynamics of few nucleon systems. % Strangeness enhancement %is therefore traced
back to the change in the production dynamics %from to minimum bias
and central collisions. A factor of two enhancement of at
mid-rapidity is indicated by recent data, where on the average {\em one}
projectile nucleon interacts with only {\em two} target nucleons. There appears
to be another factor of two enhancement in the light ion reaction relative
to , when on the average only two projectile nucleons interact with two
target ones.Comment: 29 pages, 8 figures in uuencoded postscript fil
Recommended from our members
A simple conceptual model of abrupt glacial climate events
Here we use a very simple conceptual model in an attempt to reduce essential parts of the complex nonlinearity of abrupt glacial climate changes (the so-called Dansgaard-Oeschger events) to a few simple principles, namely (i) the existence of two different climate states, (ii) a threshold process and (iii) an overshooting in the stability of the system at the start and the end of the events, which is followed by a millennial-scale relaxation. By comparison with a so-called Earth system model of intermediate complexity (CLIMBER-2), in which the events represent oscillations between two climate states corresponding to two fundamentally different modes of deep-water formation in the North Atlantic, we demonstrate that the conceptual model captures fundamental aspects of the nonlinearity of the events in that model. We use the conceptual model in order to reproduce and reanalyse nonlinear resonance mechanisms that were already suggested in order to explain the characteristic time scale of Dansgaard-Oeschger events. In doing so we identify a new form of stochastic resonance (i.e. an overshooting stochastic resonance) and provide the first explicitly reported manifestation of ghost resonance in a geosystem, i.e. of a mechanism which could be relevant for other systems with thresholds and with multiple states of operation. Our work enables us to explicitly simulate realistic probability measures of Dansgaard-Oeschger events (e.g. waiting time distributions, which are a prerequisite for statistical analyses on the regularity of the events by means of Monte-Carlo simulations). We thus think that our study is an important advance in order to develop more adequate methods to test the statistical significance and the origin of the proposed glacial 1470-year climate cycle
Dynamical mean-field approach to materials with strong electronic correlations
We review recent results on the properties of materials with correlated
electrons obtained within the LDA+DMFT approach, a combination of a
conventional band structure approach based on the local density approximation
(LDA) and the dynamical mean-field theory (DMFT). The application to four
outstanding problems in this field is discussed: (i) we compute the full
valence band structure of the charge-transfer insulator NiO by explicitly
including the p-d hybridization, (ii) we explain the origin for the
simultaneously occuring metal-insulator transition and collapse of the magnetic
moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of
plane-wave pseudopotentials which allows us to compute the orbital order and
cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a
general explanation for the appearance of kinks in the effective dispersion of
correlated electrons in systems with a pronounced three-peak spectral function
without having to resort to the coupling of electrons to bosonic excitations.
These results provide a considerable progress in the fully microscopic
investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for
publication in the Special Topics volume "Cooperative Phenomena in Solids:
Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
- …
