43 research outputs found

    Gamma-ray bursts as a probe of the very high redshift universe

    Get PDF
    There is increasingly strong evidence that gamma-ray bursts (GRBs) are associated with star-forming galaxies and occur near or in the star-forming regions of these galaxies. These associations provide indiect evidence that at least the long GRBs detected by BeppoSAX are a result of the collapse of massive stars. The recent evidence that the light curves and the spectra of the afterglows of GRB 970228 and GRB 980326 appear to contain a supernova component, in addition to a relativistic shock-wave component, provides more direct clues that this is the case. We show that, if many GRBs are indeed produced by the collapse of massive stars, GRBs and their afterglows provide a powerful probe of the very high redshift (z ≳ 5) universe. We first establish that GRBs and their afterglows are both detectable out to very high redshifts. We then show that one expects GRBs to occur out to at least z ≈ 10, and possibly to z ≈ 15-20, redshifts that are far larger than those expected for the most distant quasars. This implies that there are large numbers of GRBs with peak photon number fluxes below the detection thresholds of BATSE and HETE 2, and even below the detection threshold of Swift. The mere detection of very high redshift GRBs would give us our first information about the earliest generations of stars. We show that GRBs and their afterglows can be used as beacons to locate core-collapse supernovae at redshifts z ≫ 1 and to study the properties of these supernovae. We describe the expected properties of the absorption-line systems and the Lyα forest in the spectra of GRB afterglows and discuss various strategies for determining the redshifts of very high redshift GRBs. We then show how the absorption-line systems and the Lyα forest visible in the spectra of GRB afterglows can be used to trace the evolution of metallicity in the universe and to probe the large-scale structure of the universe at very high redshifts. Finally, we show how measurement of the Lyα break in the spectra of GRB afterglows can be used to constrain, or possibly measure, the epoch at which reionization of the universe occurred by using the Gunn-Peterson test

    Implications of Recent Observational Discoveries for the Nature and Origin of Gamma-Ray Bursts

    Get PDF
    The discoveries that GRBs have X-ray, optical and radio afterglows have connected the study of GRBs to the rest of astronomy, and revolutionized the field. In this review, I discuss the implications that the observation of these afterglows have for burst energies and luminosities, and for models of the bursts and their afterglows. I describe recent evidence linking the long, softer, smoother GRBs detected by BeppoSAX and core collapse supernovae. Finally, I summarize recent work showing that, if these GRBs are due to the collapse of massive stars, they may provide a powerful probe of the very high redshift universe.Comment: 25 pages, latex, 24 postscript figures, to be published in a special memorial volume of Physics Reports in honor of David Schram

    A possible Cepheid-like luminosity estimator for the long gamma-ray bursts

    Get PDF
    We present a possible Cepheid-like luminosity estimator for the long gamma-ray bursts based on the variability of their light curves. To construct the luminosity estimator, we use CGRO/BATSE data for 13 bursts, Wind/Konus data for five bursts, Ulysses/GRB data for one burst, and NEAR/XGRS data for one burst. Spectroscopic redshifts, peak fluxes, and high-resolution light curves are available for 11 of these bursts; partial information is available for the remaining nine bursts. We find that the isotropic equivalent peak luminosities L of these bursts positively correlate with a rigorously constructed measure V of the variability of their light curves. We fit to these data a model that accommodates both intrinsic scatter (statistical variance) and extrinsic scatter (sample variance). We find that L ∼ V3.3+1.1-09. If one excludes GRB 980425 from the fit, on the grounds that its association with SN 1998bw at a redshift of z = 0.0085 is not secure, the luminosity estimator spans ≈2.5 orders of magnitude in L, and the slope of the correlation between L and V is positive with a probability of 1 - (1.4 × 10-4) (3.8 σ). Although GRB 980425 is excluded from this fit, its L and V values are consistent with the fitted model, which suggests that GRB 980425 may well be associated with SN 1998bw and that GRB 980425 and the cosmological bursts may share a common physical origin. If one includes GRB 980425 in the fit, the luminosity estimator spans ≈6.3 orders of magnitude in L, and the slope of the correlation is positive with a probability of 1 - (9.3 × 10-7) (4.9 σ). In either case, the luminosity estimator yields best-estimate luminosities that are accurate to a factor of ≈4, or best-estimate luminosity distances that are accurate to a factor of ≈2. Regardless of whether GRB 980425 should be included in the fit, its light curve is unique in that it is much less variable than the other ≈17 light curves of bursts in our sample for which the signal-to-noise ratio is reasonably good

    A Low Latitude Halo Stream around the Milky Way

    Get PDF
    We present evidence for a ring of stars in the plane of the Milky Way, extending at least from l = 180 deg to l = 227 deg; the ring could encircle the Galaxy. The low Galactic latitude structure is at a fairly constant distance of R=18±2R = 18 \pm 2 kpc from the Galactic Center above the Galactic plane, and has R=20±2R = 20 \pm 2 kpc in the region sampled below the Galactic plane. The evidence includes five hundred SDSS spectroscopic radial velocities of stars within 30 deg of the plane. The velocity dispersion of the stars associated with this structure is found to be 27 km/s at (l,b) = (198,-27), 22 km/s at (l,b) = (225, 28), 30 km/s at (l,b) = (188, 24), and 30 km/s at (l,b) = (182, 27) degrees. The structure co-rotates with the Galactic disk stars at 110±25110 \pm 25 km/s. The narrow measured velocity dispersion is inconsistent with power law spheroid or thick disk populations. We compare the velocity dispersion in this structure with the velocity dispersion of stars in the Sagittarius dwarf galaxy tidal stream, for which we measure a velocity dispersion of 20 km/s at (l,b) = (165, -55) degrees. We interpret our measurements as evidence for a tidally disrupted satellite of 2×1072 \times 10^7 to 5×1085 \times 10^8 solar masses which rings the Galaxy

    Scientific Highlights of the HETE-2 Mission

    Full text link
    The HETE-2 mission has been highly productive. It has observed more than 250 GRBs so far. It is currently localizing 25 - 30 GRBs per year, and has localized 43 GRBs to date. Twenty-one of these localizations have led to the detection of X-ray, optical, or radio afterglows, and as of now, 11 of the bursts with afterglows have known redshifts. HETE-2 has confirmed the connection between GRBs and Type Ic supernovae, a singular achievement and certainly one of the scientific highlights of the mission so far. It has provided evidence that the isotropic-equivalent energies and luminosities of GRBs are correlated with redshift, implying that GRBs and their progenitors evolve strongly with redshift. Both of these results have profound implications for the nature of GRB progenitors and for the use of GRBs as a probe of cosmology and the early universe. HETE-2 has placed severe constraints on any X-ray or optical afterglow of a short GRB. It is also solving the mystery of "optically dark' GRBs, and revealing the nature of X-ray flashes.Comment: 10 pages, 9 figures, to appear in proc. "The Restless High-Energy Universe", Royal Tropical Institute, Amsterdam; revised text, added ref

    Optical and near-infrared observations of the afterglow of GRB 980329 from 15 hours to 10 days

    Get PDF
    We report I-band observations of the GRB 980329 field made on 1998 March 29 with the 1.34 m Tautenberg Schmidt telescope, R-, J- and K-band observations made on 1998 April 1 with the APO 3.5 m telescope, R- and I-band observations made on 1998 April 3 with the Mayall 4 m telescope at KPNO, and J- and K-band observations made 1998 April 6-8 with the Keck-I 10 m telescope. We show that these and other reported measurements are consistent with a power-law fading of the optical/near-infrared source that is coincident with the variable radio source VLA J0702+3850. This firmly establishes that this source is the afterglow of GRB 980329

    The effect of two-temperature post-shock accretion flow on the linear polarization pulse in magnetic cataclysmic variables

    Full text link
    The temperatures of electrons and ions in the post-shock accretion region of a magnetic cataclysmic variable (mCV) will be equal at sufficiently high mass flow rates or for sufficiently weak magnetic fields. At lower mass flow rates or in stronger magnetic fields, efficient cyclotron cooling will cool the electrons faster than the electrons can cool the ions and a two-temperature flow will result. Here we investigate the differences in polarized radiation expected from mCV post-shock accretion columns modeled with one- and two-temperature hydrodynamics. In an mCV model with one accretion region, a magnetic field >~30 MG and a specific mass flow rate of ~0.5 g/cm/cm/s, along with a relatively generic geometric orientation of the system, we find that in the ultraviolet either a single linear polarization pulse per binary orbit or two pulses per binary orbit can be expected, depending on the accretion column hydrodynamic structure (one- or two-temperature) modeled. Under conditions where the physical flow is two-temperature, one pulse per orbit is predicted from a single accretion region where a one-temperature model predicts two pulses. The intensity light curves show similar pulse behavior but there is very little difference between the circular polarization predictions of one- and two-temperature models. Such discrepancies indicate that it is important to model some aspect of two-temperature flow in indirect imaging procedures, like Stokes imaging, especially at the edges of extended accretion regions, were the specific mass flow is low, and especially for ultraviolet data.Comment: Accepted for publication in Astrophysics & Space Scienc

    X-Ray and Radio Observations of Bright GeV Sources

    Get PDF
    We present X-ray and radio studies of sources which are brightabove 1 GeV (F_{>1GeV} > 4e-8 ph/cm^2/s. Only 11 out of ~30 of these gamma-ray sources have been identified with lower energy counterparts: 5 blazars and 6 pulsars. Three of these pulsars are surrounded by radio pulsar wind nebulae (PWN), two of which are also seen as bright, extended X-ray synchrotron nebulae. The ASCA X-ray telescope has observed 28 of the bright GeV sources, revealing an excess of F_{2-10keV} > 10e-12 ergs/cm^2/s sources within the {\it EGRET} error contours of the unidentified sources. Although several supernova remnants are positionally coincident with these sources, we find no X-ray evidence of high energy particle production in SNR shell shocks consistent with the GeV positions. We also present initial results from follow on radio imaging studies of several fields containing unidentified sources. We have discovered new X-ray/radio nebulae in three of these fields which are strong candidates for PWN. These sources, along with a similar nebula in CTA 1 and the PWN around PSR B1853+01 in W44, are all positionally coincident with variable EGRET sources. This suggests a class of variable gamma-ray sources associated with synchrotron emitting regions powered by the winds of young pulsars.Comment: 18 pages, 26 figures, To appear in the proceedings of the workshop: "The Nature of the Unidentified Galactic Gamma-Ray Sources" held at INAOE, Mexico, October 2000, (A.Carraminana, O. Reiner and D. Thompson,

    Isospin Effects in Nuclear Multifragmentation

    Full text link
    We develop an improved Statistical Multifragmentation Model that provides the capability to calculate calorimetric and isotopic observables with precision. With this new model we examine the influence of nuclear isospin on the fragment elemental and isotopic distributions. We show that the proposed improvements on the model are essential for studying isospin effects in nuclear multifragmentation. In particular, these calculations show that accurate comparisons to experimental data require that the nuclear masses, free energies and secondary decay must be handled with higher precision than many current models accord.Comment: 46 pages, 16 figure

    Observing the First Stars and Black Holes

    Full text link
    The high sensitivity of JWST will open a new window on the end of the cosmological dark ages. Small stellar clusters, with a stellar mass of several 10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun should be directly detectable out to redshift z=10, and individual supernovae (SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible beyond this redshift. Dense primordial gas, in the process of collapsing from large scales to form protogalaxies, may also be possible to image through diffuse recombination line emission, possibly even before stars or BHs are formed. In this article, I discuss the key physical processes that are expected to have determined the sizes of the first star-clusters and black holes, and the prospect of studying these objects by direct detections with JWST and with other instruments. The direct light emitted by the very first stellar clusters and intermediate-mass black holes at z>10 will likely fall below JWST's detection threshold. However, JWST could reveal a decline at the faint-end of the high-redshift luminosity function, and thereby shed light on radiative and other feedback effects that operate at these early epochs. JWST will also have the sensitivity to detect individual SNe from beyond z=10. In a dedicated survey lasting for several weeks, thousands of SNe could be detected at z>6, with a redshift distribution extending to the formation of the very first stars at z>15. Using these SNe as tracers may be the only method to map out the earliest stages of the cosmic star-formation history. Finally, we point out that studying the earliest objects at high redshift will also offer a new window on the primordial power spectrum, on 100 times smaller scales than probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and Concurrent Facilities", Astrophysics & Space Science Library, Eds. H. Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008
    corecore