925 research outputs found
Marine benthic flora and fauna of Gourdon Bay and the Dampier Peninsula in the Kimberley region of North-Western Australia
Surveys undertaken to characterise the marine benthic habitats along the Dampier Peninsula and further south at Gourdon Bay in the Kimberley region of Western Australia were augmented with epibenthic sled sampling of soft and hard bottom habitats. This paper describes the species collected, their biomass and relative abundance for the main groups of marine macrophytes and invertebrates. Five localities were surveyed; Gourdon Bay, Quondong Point to Coulomb Point, Carnot Bay to Beagle Bay, Perpendicular Head and Packer Island. Sampling was limited to fifteen epibenthic dredge operations from a range of habitat types and was designed to target the most common habitat types and to obtain species identifications of the most important species and those which typified different habitat types. Surveys covered a total of 1,350 m 2 of seabed in depths between 11 and 23m. We identified 415 taxa comprising: 1 seagrass, 43 algae, 52 sponges, 30 ascidians, 10 hydroids, 14 scleractinian corals, 52 other cnidarians, 69 crustaceans, 73 molluscs and 71 echinoderms. Despite the limited nature of the sampling, a significant number of new species, range extensions and new records for Western Australia and Australia were recorded. Within the algae, one range extension (Halimeda cf. cuneata f. digitata not previously recorded in Western Australia) and one possible new species of Areschougia were recorded. Two range extensions were present in the ascidians; the solitary ascidian Polycarpa cf. intonata has previously only been recorded in Queensland and Cnemidocarpa cf. radicosa only in temperate Australian waters. There were several range extensions for the crustacea, for example, the sponge crab, Tumidodromia dormia, has only been recorded in Queensland. One species of holothurian of the genus Phyllophorus could not be identified from the literature available and may represent a new species. Similarly, a small species of the echinoid Gymnechinus could possibly be a new species. The collections of hydroids, hard corals, crinoids and molluscs contained no new species or range extensions. There was difficulty in identification of some groups to species level due to the status of the current taxonomic literature (e.g. Cnidaria, Porifera and ascidians) and there may be a number of new species among the material collected. Among the anthozoa, there is at least one new species of Chromonephthea and potentially 10 range extensions to Western Australia. Sinularia cf. acuta and Chromonephthea curvata are both new records for Australia with both previously recorded in Indonesia only. Among the better known taxa (e.g. molluscs, echinoderms, corals), most of the taxa identified to species level have been recorded to occur throughout north-western Australia, however the diversity recorded in this study is less than other parts of the Kimberley and this is almost certainly a result of the small overall area sampled and the single method of collection utilised. The most important species on soft bottom habitats in terms of biomass was the heart urchin Breynia desorii (up to 326 g.m -2). Sponges were the dominant fauna by biomass (up to 620 g.m -2) on hard bottom habitats and biomass was dominated a by a few large cup and massive sponge species (e.g. Pione velans and two unidentified Spheciospongia). The biomass of other filter feeders, especially ascidians (e.g. Aplidium cf. crateriferum), soft corals (e.g. Chromonephthea spp.), gorgonians (e.g. Junceella fragilis and Dichotella gemmacea) was also high, indicating the importance of these groups in characterising hard bottom habitats. Although low in biomass, crinoids such as Comaster multifidus and Comatula pectinata were abundant in samples that included a high biomass of other filter feeders
Plasma Turbulence in the Local Bubble
Turbulence in the Local Bubble could play an important role in the
thermodynamics of the gas that is there. The best astronomical technique for
measuring turbulence in astrophysical plasmas is radio scintillation.
Measurements of the level of scattering to the nearby pulsar B0950+08 by
Philips and Clegg in 1992 showed a markedly lower value for the line-of-sight
averaged turbulent intensity parameter is smaller than normal for two of them, but is completely nominal for
the third. This inconclusive status of affairs could be improved by
measurements and analysis of ``arcs'' in ``secondary spectra'' of pulsars.Comment: Submitted to Space Science Reviews as contribution to Proceedings of
ISSI (International Space Science Institute) workshop "From the Heliosphere
to the Local Bubble". Refereed version accepted for publicatio
Cartan subalgebras in C*-algebras of Hausdorff etale groupoids
The reduced -algebra of the interior of the isotropy in any Hausdorff
\'etale groupoid embeds as a -subalgebra of the reduced
-algebra of . We prove that the set of pure states of with unique
extension is dense, and deduce that any representation of the reduced
-algebra of that is injective on is faithful. We prove that there
is a conditional expectation from the reduced -algebra of onto if
and only if the interior of the isotropy in is closed. Using this, we prove
that when the interior of the isotropy is abelian and closed, is a Cartan
subalgebra. We prove that for a large class of groupoids with abelian
isotropy---including all Deaconu--Renault groupoids associated to discrete
abelian groups--- is a maximal abelian subalgebra. In the specific case of
-graph groupoids, we deduce that is always maximal abelian, but show by
example that it is not always Cartan.Comment: 14 pages. v2: Theorem 3.1 in v1 incorrect (thanks to A. Kumjain for
pointing out the error); v2 shows there is a conditional expectation onto
iff the interior of the isotropy is closed. v3: Material (including some
theorem statements) rearranged and shortened. Lemma~3.5 of v2 removed. This
version published in Integral Equations and Operator Theor
Phase Coherence and Control of Stored Photonic Information
We report the demonstration of phase coherence and control for the recently
developed "light storage" technique. Specifically, we use a pulsed magnetic
field to vary the phase of atomic spin excitations which result from the
deceleration and storing of a light pulse in warm Rb vapor. We then convert the
spin excitations back into light and detect the resultant phase shift in an
optical interferometric measurement. The coherent storage of photon states in
matter is essential for the practical realization of many basic concepts in
quantum information processing.Comment: 5 pages, 3 figures. Submitted to Phys. Rev. Let
Localization by disorder in the infrared conductivity of (Y,Pr)Ba2Cu3O7 films
The ab-plane reflectivity of (Y{1-x}Prx)Ba2Cu3O7 thin films was measured in
the 30-30000 cm-1 range for samples with x = 0 (Tc = 90 K), x = 0.4 (Tc = 35 K)
and x = 0.5 (Tc = 19 K) as a function of temperature in the normal state. The
effective charge density obtained from the integrated spectral weight decreases
with increasing x. The variation is consistent with the higher dc resistivity
for x = 0.4, but is one order of magnitude smaller than what would be expected
for x = 0.5. In the latter sample, the conductivity is dominated at all
temperatures by a large localization peak. Its magnitude increases as the
temperature decreases. We relate this peak to the dc resistivity enhancement. A
simple localization-by-disorder model accounts for the optical conductivity of
the x = 0.5 sample.Comment: 7 pages with (4) figures include
Two-species percolation and Scaling theory of the metal-insulator transition in two dimensions
Recently, a simple non-interacting-electron model, combining local quantum
tunneling via quantum point contacts and global classical percolation, has been
introduced in order to describe the observed ``metal-insulator transition'' in
two dimensions [1]. Here, based upon that model, a two-species-percolation
scaling theory is introduced and compared to the experimental data. The two
species in this model are, on one hand, the ``metallic'' point contacts, whose
critical energy lies below the Fermi energy, and on the other hand, the
insulating quantum point contacts. It is shown that many features of the
experiments, such as the exponential dependence of the resistance on
temperature on the metallic side, the linear dependence of the exponent on
density, the scale of the critical resistance, the quenching of the
metallic phase by a parallel magnetic field and the non-monotonic dependence of
the critical density on a perpendicular magnetic field, can be naturally
explained by the model.
Moreover, details such as the nonmonotonic dependence of the resistance on
temperature or the inflection point of the resistance vs. parallel magnetic are
also a natural consequence of the theory. The calculated parallel field
dependence of the critical density agrees excellently with experiments, and is
used to deduce an experimental value of the confining energy in the vertical
direction. It is also shown that the resistance on the ``metallic'' side can
decrease with decreasing temperature by an arbitrary factor in the degenerate
regime ().Comment: 8 pages, 8 figure
Physical properties and micromorphology of till deposits from Talla Earth Observatory, Southern Uplands, Scotland
This factual report describes the 2007 field program at BGS’ Talla Earth Observatory, in the
Scottish Southern Uplands, UK. The work involved 12 trial pits with logging of pit walls, soil
sampling for particle size analysis and undisturbed sampling for thin sections and
micromorphological analysis of a till and a hard pan in moranic deposits.
The tills of the Langholm Till Formation (of McMillan & Merritt, 2012) are technically ‘coarse
soils’ from a BS5930:1999 ground engineering perspective; typically very dense/hard, very wellgraded silty sandy gravels with a matrix dominated by silt and sand. In thin section the till sandmatrix-supported gravel clasts show a preferred alignment orientated suggesting a micro-fabric
indicative of a subglacially deposited till. Clast lithology includes sandstone, siltstone and
mudstone, and are consistent with the local bedrock lithology. Cobbles and boulders are often
‘very strong’ from a geotechnical perspective, but may have weaker ‘rotten’ crust in valley floor
settings. The work provides new data on the geotechnical properties of Scottish tills and enhances
our understanding of the physical and hydrological properties of commonly encountered
Quaternary deposits that occur in the Talla Burn and nearby upland catchments
Reflection and Ducting of Gravity Waves Inside the Sun
Internal gravity waves excited by overshoot at the bottom of the convection
zone can be influenced by rotation and by the strong toroidal magnetic field
that is likely to be present in the solar tachocline. Using a simple Cartesian
model, we show how waves with a vertical component of propagation can be
reflected when traveling through a layer containing a horizontal magnetic field
with a strength that varies with depth. This interaction can prevent a portion
of the downward-traveling wave energy flux from reaching the deep solar
interior. If a highly reflecting magnetized layer is located some distance
below the convection zone base, a duct or wave guide can be set up, wherein
vertical propagation is restricted by successive reflections at the upper and
lower boundaries. The presence of both upward- and downward-traveling
disturbances inside the duct leads to the existence of a set of horizontally
propagating modes that have significantly enhanced amplitudes. We point out
that the helical structure of these waves makes them capable of generating an
alpha-effect, and briefly consider the possibility that propagation in a shear
of sufficient strength could lead to instability, the result of wave growth due
to over-reflection.Comment: 23 pages, 5 figures. Accepted for publication in Solar Physic
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
MMN and Differential Waveform
A mismatch negativity response (MMN) and a new differential waveform were derived in an effort to evaluate a neural refractory or recovery effect in adult listeners. The MMN was elicited using oddball test runs in which the standard and deviant stimuli differed in frequency. To derive the differential waveform, the same standard and deviant stimuli were presented alone. MMN responses were obtained by subtracting the averaged responses to standards from the deviants. The differential waveforms were obtained by subtracting the averaged responses to standards presented alone from deviants presented alone. Scalp topography for the MMN and differential waveforms were similar. A significant (p < .05) positive and negative correlation was found between the earlier and later components of the bimodal MMN and the N1 and P2 component of the differential waveform, respectively. Further, N1 and P2 of the differential waveform were significant (p < .05) predictor variables of early and late peak amplitudes of the MMN. These results suggest that refractory effects may overlay/modify the morphology of the MMN waveform
- …
