610 research outputs found

    Large Mixing Induced by the Strong Coupling with a Single Bulk Neutrinos

    Get PDF
    Neutrino is a good probe of extra dimensions. Large mixing and the apparent lack of very complicated oscillation patterns may be an indication of large couplings between the brane and a single bulk neutrino. A simple and realistic five-dimensional model of this kind is discussed. It requires a sterile in addition to three active neutrinos on the brane, all coupled strongly to one common bulk neutrino, but not directly among themselves. Mindful that sterile neutrinos are disfavored in the atmospheric and solar data, we demand induced mixing to occur among the active neutrinos, but not between the active and the sterile. The size RR of the extra dimension is arbitrary in this model, otherwise it contains six parameters which can be used to fit the three neutrino masses and the three mixing angles. However, in the model those six parameters must be suitably ordered, so a successful fit is not guaranteed. It turns out that not only the data can be fitted, but as a result of the ordering, a natural connection between the smallness of the reactor angle θ13\theta_{13} and the smallness of the mass-gap ratio ΔMsolar2/ΔMatmospheric2\Delta M^2_{solar}/\Delta M^2_{atmospheric} can be derived.Comment: Misprints above eq. (22) corrected. To appear in PR

    N-body simulations of galaxies and groups of galaxies with the Marseille GRAPE systems

    Get PDF
    I review the Marseille GRAPE systems and the N-body simulations done with them. I first describe briefly the available hardware and software, their possibilities and their limitations. I then describe work done on interacting galaxies and groups of galaxies. This includes simulations of the formation of ring galaxies, simulations of bar destruction by massive compact satellites, of merging in compact groups and of the formation of brightest members in clusters of galaxies.Comment: 13 pages, 5 figures, to be published in "Non-linear Dynamics and Chaos in Astrophysics", eds. J.R. Buchler, S. Gottesman, J. Hunter and H. Kandrup, Annals of the New York Academy of Science

    Properties of pattern formation and selection processes in nonequilibrium systems with external fluctuations

    Full text link
    We extend the phase field crystal method for nonequilibrium patterning to stochastic systems with external source where transient dynamics is essential. It was shown that at short time scales the system manifests pattern selection processes. These processes are studied by means of the structure function dynamics analysis. Nonequilibrium pattern-forming transitions are analyzed by means of numerical simulations.Comment: 15 poages, 8 figure

    Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction

    Get PDF
    Surgeries to correct nasal airway obstruction (NAO) often have less than desirable outcomes, partly due to the absence of an objective tool to select the most appropriate surgical approach for each patient. Computational fluid dynamics (CFD) models can be used to investigate nasal airflow, but variables need to be identified that can detect surgical changes and correlate with patient symptoms. CFD models were constructed from pre- and post-surgery computed tomography scans for 10 NAO patients showing no evidence of nasal cycling. Steady-state inspiratory airflow, nasal resistance, wall shear stress, and heat flux were computed for the main nasal cavity from nostrils to posterior nasal septum both bilaterally and unilaterally. Paired t-tests indicated that all CFD variables were significantly changed by surgery when calculated on the most obstructed side, and that airflow, nasal resistance, and heat flux were significantly changed bilaterally as well. Moderate linear correlations with patient-reported symptoms were found for airflow, heat flux, unilateral allocation of airflow, and unilateral nasal resistance as a fraction of bilateral nasal resistance when calculated on the most obstructed nasal side, suggesting that these variables may be useful for evaluating the efficacy of nasal surgery objectively. Similarity in the strengths of these correlations suggests that patient-reported symptoms may represent a constellation of effects and that these variables should be tracked concurrently during future virtual surgery planning

    Oscillation Induced Neutrino Asymmetry Growth in the Early Universe

    Get PDF
    We study the dynamics of active-sterile neutrino oscillations in the early universe using full momentum-dependent quantum-kinetic equations. These equations are too complicated to allow for an analytical treatment, and numerical solution is greatly complicated due to very pronounced and narrow structures in the momentum variable introduced by resonances. Here we introduce a novel dynamical discretization of the momentum variable which overcomes this problem. As a result we can follow the evolution of neutrino ensemble accurately well into the stable growing phase. Our results confirm the existence of a "chaotic region" of mixing parameters, for which the final sign of the asymmetry, and hence the SBBN prediction of He(4)-abundance cannot be accurately determined.Comment: 23 pages, 9 eps-figs, Latex, uses JHEP clas

    Constraining neutrino oscillation parameters with current solar and atmospheric data

    Get PDF
    We analyze the impact of recent solar, atmospheric and reactor data in the determination of the neutrino oscillation parameters, taking into account that both the solar nu_e and the atmospheric nu_mu may convert to a mixture of active and sterile neutrinos. We use the most recent global solar neutrino data, including the 1496-day Super-K neutrino data sample, and we investigate in detail the impact of the SNO neutral current, spectral and day/night data by performing also an analysis using only the charged current rate from SNO. The implications of the first 145.1 days of KamLAND data on the determination of the solar neutrino parameters are also discussed in detail. We confirm the clear preference of solar+reactor data for the pure active LMA-MSW solution of the solar neutrino problem, and obtain that the LOW, VAC, SMA and Just-So^2 solutions are disfavored with a Delta_chi^2 = 22, 22, 36, 44, respectively. Furthermore, we find that the global solar data constrains the admixture of a sterile neutrino to be less than 43% at 99% CL. By performing an improved fit of the atmospheric data, we also update the corresponding regions of oscillation parameters. We find that the recent atmospheric Super-K (1489-day) and MACRO data have a strong impact on constraining a sterile component in atmospheric oscillations: if the nu_mu is restricted to the atmospheric mass states only a sterile admixture of 16% is allowed at 99% CL, while a bound of 35% is obtained in the unconstrained case. Pure sterile oscillations are disfavored with a Delta_chi^2 = 34.6 compared to the pure active case.Comment: 28 pages, LaTeX file using RevTEX4, 12 figures and 3 tables included. Improved version including the new KamLAND dat

    Supernova Bounds on Majoron-emitting decays of light neutrinos

    Get PDF
    Neutrino masses arising from the spontaneous violation of ungauged lepton-number are accompanied by a physical Goldstone boson, generically called Majoron. In the high-density supernova medium the effects of Majoron-emitting neutrino decays are important even if they are suppressed in vacuo by small neutrino masses and/or small off-diagonal couplings. We reconsider the influence of these decays on the neutrino signal of supernovae in the light of recent Super-Kamiokande data on solar and atmospheric neutrinos. We find that majoron-neutrino coupling constants in the range 3\times 10^{-7}\lsim g\lsim 2\times 10^{-5} or g \gsim 3 \times 10^{-4} are excluded by the observation of SN1987A. Then we discuss the potential of Superkamiokande and the Sudbury Neutrino Observatory to detect majoron neutrino interactions in the case of a future galactic supernova. We find that these experiments could probe majoron neutrino interactions with improved sensitivity.Comment: 28 pages, 5 figure

    Confusing non-standard neutrino interactions with oscillations at a neutrino factory

    Get PDF
    Most neutrino mass theories contain non-standard interactions (NSI) of neutrinos which can be either non-universal (NU) or flavor-changing (FC). We study the impact of such interactions on the determination of neutrino mixing parameters at a neutrino factory using the so-called ``golden channels'' \pnu{e}\to\pnu{\mu} for the measurement of \theta_{13}. We show that a certain combination of FC interactions in neutrino source and earth matter can give exactly the same signal as oscillations arising due to \theta_{13}. This implies that information about \theta_{13} can only be obtained if bounds on NSI are available. Taking into account the existing bounds on FC interactions, this leads to a drastic loss in sensitivity in \theta_{13}, at least two orders of magnitude. A near detector at a neutrino factory offers the possibility to obtain stringent bounds on some NSI parameters. Such near site detector constitutes an essential ingredient of a neutrino factory and a necessary step towards the determination of \theta_{13} and subsequent study of leptonic CP violation.Comment: 23 pages, 5 figures, improved version, accepted for publication in Phs. Rev. D, references adde

    Lepton Mixing Matrix in Standard Model Extended by One Sterile Neutrino

    Full text link
    We consider the simplest extension of the standard electroweak model by one sterile neutrino that allows for neutrino masses and mixing. We find that its leptonic sector contains much less free physical parameters than previously realized. In addition to the two neutrino masses, the lepton mixing matrix in charged current interactions involves (n-1) free physical mixing angles for n generations. The mixing matrix in neutral current interactions of neutrinos is completely fixed by the two masses. Both interactions conserve CP. We illustrate the phenomenological implications of the model by vacuum neutrino oscillations, tritium beta decay and neutrinoless double beta decay. It turns out that, due to the revealed specific structure in its mixing matrix, the model with any n generations cannot accommodate simultaneously the data by KamLAND, K2K and CHOOZ.Comment: 14 pages, no figures; version 2: (1) added a short paragraph at the end of subsec 2.2 to record the counting of physical parameters for any numbers of generations and sterile neutrinos for completeness; (2) added a note in ref list, item [18] to quote and comment on an earlier work; (3) added the second paper to ref list, item [17]; (4) fixed typo

    Connecting bimaximal neutrino mixing to a light sterile neutrino

    Get PDF
    It is shown that if small neutrino masses owe their origin to the conventional seesaw mechanism and the MNS mixing matrix is in the exact bimaximal form, then there exist symmetries in the theory that allow one of the righthanded neutrinos to become naturally massless, making it a candidate for the sterile neutrino discussed in the literature. Departures from the exact bimaximal limit leads to tiny mass for the sterile neutrino as well as its mixing to the active neutrinos. This provides a minimal theoretical framework where a simultaneous explanation of the solar, atmospheric and LSND observations within the so-called 3+1 scenario may be possible.Comment: new references added; paper accepted for publication in Phys. Rev. D.(rapid communications); note adde
    • …
    corecore