1,523 research outputs found

    Frequency doubling in Ga:La:S optical glass with microcrystals

    No full text
    Second harmonic generation in gallium-lanthanum-sulphide (Ga:La:S) and GeS2+Ga:La:S glasses is investigated. It is shown that microcrystals of Ga:La:S and of alpha-phase of gallium-sulphide (alpha-Ga2S3), whose presence in the glass matrix is revealed by x-ray diffraction analysis, are responsible for the frequency doubling process

    Spontaneous heavy cluster emission rates using microscopic potentials

    Get PDF
    The nuclear cluster radioactivities have been studied theoretically in the framework of a microscopic superasymmetric fission model (MSAFM). The nuclear interaction potentials required for binary cold fission processes are calculated by folding in the density distribution functions of the two fragments with a realistic effective interaction. The microscopic nuclear potential thus obtained has been used to calculate the action integral within the WKB approximation. The calculated half lives of the present MSAFM calculations are found to be in good agreement over a wide range of observed experimental data.Comment: 4 pages, 4 figure

    Enhanced optical properties of Tm<sup>3+</sup> in f co-doped lead germanate glasses for fibre device applications

    No full text
    The effect on structure and property of adding fluoride into Tm3+ doped lead-germanate glass was established and verified experimentally. It was found that up to 10 mol% of fluoride could be introduced into our original lead-germanate composition while retaining the high thermal stability ideal for fibre fabrication. Much improved spectroscopic features, namely increased fluorescent lifetimes from 3H4 and 3F4 levels in Tm3+ with increasing fluorine content, were observed. At the same time it was found that the radiative properties of Tm3+ were left unchanged by fluoride addition, indicating that reduced multiphonon relaxation was responsible for the increased fluorescent lifetimes. This was well explained and foreseen by our established structure-property relation in terms of adding fluorine to the glass. In conclusion, fluoro-germanate glass shows advantages over germanate glass in optical properties and over fluoride glass in chemical and mechanical properties for practical fiber device applications. [Presentation slides

    Levitation of quantum Hall critical states in a lattice model with spatially correlated disorder

    Full text link
    The fate of the current carrying states of a quantum Hall system is considered in the situation when the disorder strength is increased and the transition from the quantum Hall liquid to the Hall insulator takes place. We investigate a two-dimensional lattice model with spatially correlated disorder potentials and calculate the density of states and the localization length either by using a recursive Green function method or by direct diagonalization in connection with the procedure of level statistics. From the knowledge of the energy and disorder dependence of the localization length and the density of states (DOS) of the corresponding Landau bands, the movement of the current carrying states in the disorder--energy and disorder--filling-factor plane can be traced by tuning the disorder strength. We show results for all sub-bands, particularly the traces of the Chern and anti-Chern states as well as the peak positions of the DOS. For small disorder strength WW we recover the well known weak levitation of the critical states, but we also reveal, for larger WW, the strong levitation of these states across the Landau gaps without merging. We find the behavior to be similar for exponentially, Gaussian, and Lorentzian correlated disorder potentials. Our study resolves the discrepancies of previously published work in demonstrating the conflicting results to be only special cases of a general lattice model with spatially correlated disorder potentials. To test whether the mixing between consecutive Landau bands is the origin of the observed floating, we truncate the Hilbert space of our model Hamiltonian and calculate the behavior of the current carrying states under these restricted conditions.Comment: 10 pages, incl. 13 figures, accepted for publication in PR

    Image and Coherence Transfer in the Stimulated Down-conversion Process

    Get PDF
    The intensity transverse profile of the light produced in the process of stimulated down-conversion is derived. A quantum-mechanical treatment is used. We show that the angular spectrum of the pump laser can be transferred to the stimulated down-converted beam, so that images can also be transferred from the pump to the down-converted beam. We also show that the transfer can occur from the stimulating beam to the down-converted one. Finally, we study the process of diffraction through an arbitrarily shaped screen. For the special case of a double-slit, the interference pattern is explicitly obtained. The visibility for the spontaneous emitted light is in accordance with the van Cittert - Zernike theorem for incoherent light, while the visibility for the stimulated emitted light is unity. The overall visibility is in accordance with previous experimental results

    Generalized Second Law of Thermodynamics on the Event Horizon for Interacting Dark Energy

    Full text link
    Here we are trying to find the conditions for the validity of the generalized second law of thermodynamics (GSLT) assuming the first law of thermodynamics on the event horizon in both cases when the FRW universe is filled with interacting two fluid system- one in the form of cold dark matter and the other is either holographic dark energy or new age graphic dark energy. Using the recent observational data we have found that GSLT holds both in quintessence era as well as in phantom era for new age graphic model while for holographic dark energy GSLT is valid only in phantom era.Comment: 8 pages, 2 figure

    Cosmological constraints on unparticle dark matter

    Full text link
    In unparticle dark matter (unmatter) models the equation of state of the unmatter is given by p=Ļ/(2dU+1)p=\rho/(2d_U+1), where dUd_U is the scaling factor. Unmatter with such equations of state would have a significant impact on the expansion history of the universe. Using type Ia supernovae (SNIa), the baryon acoustic oscillation (BAO) measurements and the shift parameter of the cosmic microwave background (CMB) to place constraints on such unmatter models we find that if only the SNIa data is used the constraints are weak. However, with the BAO and CMB shift parameter data added strong constraints can be obtained. For the Ī›\LambdaUDM model, in which unmatter is the sole dark matter, we find that dU>60d_U > 60 at 95% C.L. For comparison, in most unparticle physics models it is assumed dU<2d_U<2. For the Ī›\LambdaCUDM model, in which unmatter co-exists with cold dark matter, we found that the unmatter can at most make up a few percent of the total cosmic density if dU<10d_U<10, thus it can not be the major component of dark matter.Comment: Replaced with revised version. BAO data is added to make a tighter constraint. Version accepted for publication on Euro.Phys.J.

    Novel glasses for optical-fibre device applications

    No full text
    This paper reviews current research activities on novel multicomponent (soft) glasses for optical-fibre devices, underway at the Optoelectronics Research Centre, University of Southampton. Compound glasses are crucial for a variety of important optical-fibre devices, including 1.3Āµm optical fibre amplifiers, up-conversion UV and visible fibre lasers, long-wavelength and high-power fibre lasers. Recent results and progress on silicate, phosphate, germanate, tellurite, fluoride, sulphide and chloride glasses and fibres are presented, together with device performance and application. (A proposed invited talk

    Quantifying the levitation picture of extended states in lattice models

    Full text link
    The behavior of extended states is quantitatively analyzed for two dimensional lattice models. A levitation picture is established for both white-noise and correlated disorder potentials. In a continuum limit window of the lattice models we find simple quantitative expressions for the extended states levitation, suggesting an underlying universal behavior. On the other hand, these results point out that the Quantum Hall phase diagrams may be disorder dependent.Comment: 5 pages, submitted to PR
    • ā€¦
    corecore