22 research outputs found

    Status of four-neutrino mass schemes: a global and unified approach to current neutrino oscillation data

    Get PDF
    We present a unified global analysis of neutrino oscillation data within the framework of the four-neutrino mass schemes (3+1) and (2+2). We include all data from solar and atmospheric neutrino experiments, as well as information from short-baseline experiments including LSND. If we combine only solar and atmospheric neutrino data, (3+1) schemes are clearly preferred, whereas short-baseline data in combination with atmospheric data prefers (2+2) models. When combining all data in a global analysis the (3+1) mass scheme gives a slightly better fit than the (2+2) case, though all four-neutrino schemes are presently acceptable. The LSND result disfavors the three-active neutrino scenario with only Δmsol2\Delta m^2_{sol} and Δmatm2\Delta m^2_{atm} at 99.9% CL with respect to the four-neutrino best fit model. We perform a detailed analysis of the goodness of fit to identify which sub-set of the data is in disagreement with the best fit solution in a given mass scheme.Comment: 32 pages, 8 Figures included, REVTeX4.Improved discussion in sec. XI, references added, version accepted by Phys. Rev.

    Neutrinoless double-beta decay with three or four neutrino mixing

    Full text link
    Considering the scheme with mixing of three neutrinos and a mass hierarchy that can accommodate the results of solar and atmospheric neutrino experiments, it is shown that the results of solar neutrino experiments imply a lower bound for the effective Majorana mass in neutrinoless double-beta decay, under the natural assumptions that massive neutrinos are Majorana particles and there are no unlikely fine-tuned cancellations among the contributions of the different neutrino masses. Considering the four-neutrino schemes that can accommodate also the results of the LSND experiment, it is shown that only one of them is compatible with the results of neutrinoless double-beta decay experiments and with the measurement of the abundances of primordial elements produced in Big-Bang Nucleosynthesis. It is shown that in this scheme, under the assumptions that massive neutrinos are Majorana particles and there are no cancellations among the contributions of the different neutrino masses, the results of the LSND experiment imply a lower bound for the effective Majorana mass in neutrinoless double-beta decay.Comment: 18 pages including 2 figures, RevTe
    corecore