413 research outputs found

    Strength and voluntary activation in relation to functioning in patients with osteoarthritis

    Get PDF
    Haan, A. de [Promotor]Jones, D.A. [Promotor]Ruiter, C.J. de [Copromotor

    Effect of stimulation intensity on assessment of voluntary activation

    Get PDF
    Introduction: The interpolated twitch technique is often used to assess voluntary activation (VA) of skeletal muscles. We investigated VA and the voluntary torque-superimposed torque relationship using either supramaximal nerve stimulation or better tolerated submaximal muscle stimulation, which is often used with patients. Methods: Thirteen healthy subjects performed maximal and submaximal isometric knee extensions with superimposed maximal or submaximal doublets (100 Hz). Results: Superimposed torque relative to potentiated resting doublets was smaller with maximal nerve than with submaximal muscle stimulation. Maximal VA was 87 ± 7% and 93 ± 5% for submaximal muscle and maximal nerve stimulation, respectively. The individual voluntary torque-superimposed torque relationships were more linear for submaximal muscle stimulation, possibly leading to less overestimation of VA. Conclusions: Submaximal muscle stimulation can be used to estimate VA in the knee extensors. It is less painful, and overestimation of VA may be less compared with maximal nerve stimulation. © 2012 Wiley Periodicals, Inc

    Proof for an upper bound in fixed-node Monte Carlo for lattice fermions

    Get PDF
    We justify a recently proposed prescription for performing Green Function Monte Carlo calculations on systems of lattice fermions, by which one is able to avoid the sign problem. We generalize the prescription such that it can also be used for problems with hopping terms of different signs. We prove that the effective Hamiltonian, used in this method, leads to an upper bound for the ground-state energy of the real Hamiltonian, and we illustrate the effectiveness of the method on small systems.Comment: 14 pages in revtex v3.0, no figure

    Optical biopsy of epithelial cancers by optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) is an optical technique that measures the backscattering of near-infrared light by tissue. OCT yields in 2D and 3D images at micrometer-scale resolution, thus providing optical biopsies, approaching the resolution of histopathological imaging. The technique has shown to allow in vivo differentiation between benign and malignant epithelial tissue, through qualitative assessment of OCT images, as well as by quantitative evaluation, e.g., functional OCT. This study aims to summarize the principles of OCT and to discuss the current literature on the diagnostic value of OCT in the diagnosis of epithelial (pre)malignant lesions. The authors did a systematic search of the electronic databases PubMed and Embase on OCT in the diagnostic process of (pre)malignant epithelial lesions. OCT is able to differentiate between benign and (pre)malignant lesions of epithelial origin in a wide variety of tissues. In this way, OCT can detect skin cancers, oral, laryngeal, and esophageal cancer as well as genital and bladder cancer. OCT is an innovative technique which enables an optical biopsy of epithelial lesions. The incorporation of OCT in specific tools, like handheld and catheter-based probes, will further improve the implementation of this technology in daily clinical practice

    Thermodynamic instabilities in one dimensional particle lattices: a finite-size scaling approach

    Full text link
    One-dimensional thermodynamic instabilities are phase transitions not prohibited by Landau's argument, because the energy of the domain wall (DW) which separates the two phases is infinite. Whether they actually occur in a given system of particles must be demonstrated on a case-by-case basis by examining the (non-) analyticity properties of the corresponding transfer integral (TI) equation. The present note deals with the generic Peyrard-Bishop model of DNA denaturation. In the absence of exact statements about the spectrum of the singular TI equation, I use Gauss-Hermite quadratures to achieve a single-parameter-controlled approach to rounding effects; this allows me to employ finite-size scaling concepts in order to demonstrate that a phase transition occurs and to derive the critical exponents.Comment: 5 pages, 6 figures, subm. to Phys. Rev.

    Parametric imaging of attenuation by optical coherence tomography: review of models, methods, and clinical translation

    Get PDF
    SIGNIFICANCE: Optical coherence tomography (OCT) provides cross-sectional and volumetric images of backscattering from biological tissue that reveal the tissue morphology. The strength of the scattering, characterized by an attenuation coefficient, represents an alternative and complementary tissue optical property, which can be characterized by parametric imaging of the OCT attenuation coefficient. Over the last 15 years, a multitude of studies have been reported seeking to advance methods to determine the OCT attenuation coefficient and developing them toward clinical applications. AIM: Our review provides an overview of the main models and methods, their assumptions and applicability, together with a survey of preclinical and clinical demonstrations and their translation potential. RESULTS: The use of the attenuation coefficient, particularly when presented in the form of parametric en face images, is shown to be applicable in various medical fields. Most studies show the promise of the OCT attenuation coefficient in differentiating between tissues of clinical interest but vary widely in approach. CONCLUSIONS: As a future step, a consensus on the model and method used for the determination of the attenuation coefficient is an important precursor to large-scale studies. With our review, we hope to provide a basis for discussion toward establishing this consensus

    Fluorescence background quenching as a means to increase Signal to Background ratio - a proof of concept during Nerve Imaging

    Get PDF
    Introduction: Adequate signal to background ratios are critical for the implementation of fluorescence-guided surgery technologies. While local tracer administrations help to reduce the chance of systemic side effects, reduced spatial migration and non-specific tracer diffusion can impair the discrimination between the tissue of interest and the background. To combat background signals associated with local tracer administration, we explored a pretargeting concept aimed at quenching non-specific fluorescence signals. The efficacy of this concept was evaluated in an in vivo neuronal tracing set-up.Methods: Neuronal tracing was achieved using a wheat germ agglutinin (WGA) lectin. functionalized with an azide-containing Cy5 dye (N-3-Cy5-WGA). A Cy7 quencher dye (Cy7-DBCO) was subsequently used to yield Cy7-Cy5-WGA, a compound wherein the Cy5 emission is quenched by Forster resonance energy transfer to Cy7. The photophysical properties of N-3-Cy5-WGA and Cy7-Cy5-WGA were evaluated together with deactivation kinetics in situ, in vitro (Schwannoma cell culture), ex vivo (muscle tissue from mice; used for dose optimization), and in vivo (nervus ischiadicus in THY-1 YFP mice).Results: In situ, conjugation of Cy7-DBCO to N-3-Cy5-WGA resulted in >90% reduction of the Cy5 fluorescence signal intensity at 30 minutes after addition of the quencher. In cells, pretargeting with the N-3-Cy5-WGA lectin yielded membranous staining, which could efficiently be deactivated by Cy7-DBCO over the course of 30 minutes (91% Cy5 signal decrease). In ex vivo muscle tissue, administration of Cy7-DBCO at the site where N-3-Cy5-WGA was injected induced 80-90% quenching of the Cy5-related signal after 10-20 minutes, while the Cy7-related signal remained stable over time. In vivo, Cy7-DBCO effectively quenched the non-specific background signal up to 73% within 5 minutes, resulting in a 50% increase in the signal-to-background ratio between the nerve and injection site.Conclusion: The presented pretargeted fluorescence-quenching technology allowed fast and effective reduction of the background signal at the injection site, while preserving in vivo nerve visualization. While this proof-of-principle study was focused on imaging of nerves using a fluorescent WGA-lectin, the same concept could in the future also apply to applications such as sentinel node imaging

    Incorporation of Density Matrix Wavefunctions in Monte Carlo Simulations: Application to the Frustrated Heisenberg Model

    Get PDF
    We combine the Density Matrix Technique (DMRG) with Green Function Monte Carlo (GFMC) simulations. The DMRG is most successful in 1-dimensional systems and can only be extended to 2-dimensional systems for strips of limited width. GFMC is not restricted to low dimensions but is limited by the efficiency of the sampling. This limitation is crucial when the system exhibits a so-called sign problem, which on the other hand is not a particular obstacle for the DMRG. We show how to combine the virtues of both methods by using a DMRG wavefunction as guiding wave function for the GFMC. This requires a special representation of the DMRG wavefunction to make the simulations possible within reasonable computational time. As a test case we apply the method to the 2-dimensional frustrated Heisenberg antiferromagnet. By supplementing the branching in GFMC with Stochastic Reconfiguration (SR) we get a stable simulation with a small variance also in the region where the fluctuations due to minus sign problem are maximal. The sensitivity of the results to the choice of the guiding wavefunction is extensively investigated. We analyse the model as a function of the ratio of the next-nearest to nearest neighbor coupling strength. We observe in the frustrated regime a pattern of the spin correlations which is in-between dimerlike and plaquette type ordering, states that have recently been suggested. It is a state with strong dimerization in one direction and weaker dimerization in the perpendicular direction.Comment: slightly revised version with added reference
    corecore