We combine the Density Matrix Technique (DMRG) with Green Function Monte
Carlo (GFMC) simulations. The DMRG is most successful in 1-dimensional systems
and can only be extended to 2-dimensional systems for strips of limited width.
GFMC is not restricted to low dimensions but is limited by the efficiency of
the sampling. This limitation is crucial when the system exhibits a so-called
sign problem, which on the other hand is not a particular obstacle for the
DMRG. We show how to combine the virtues of both methods by using a DMRG
wavefunction as guiding wave function for the GFMC. This requires a special
representation of the DMRG wavefunction to make the simulations possible within
reasonable computational time. As a test case we apply the method to the
2-dimensional frustrated Heisenberg antiferromagnet. By supplementing the
branching in GFMC with Stochastic Reconfiguration (SR) we get a stable
simulation with a small variance also in the region where the fluctuations due
to minus sign problem are maximal. The sensitivity of the results to the choice
of the guiding wavefunction is extensively investigated. We analyse the model
as a function of the ratio of the next-nearest to nearest neighbor coupling
strength. We observe in the frustrated regime a pattern of the spin
correlations which is in-between dimerlike and plaquette type ordering, states
that have recently been suggested. It is a state with strong dimerization in
one direction and weaker dimerization in the perpendicular direction.Comment: slightly revised version with added reference