19 research outputs found

    Zentralnerv�se Korrekturen in der Wahrnehmung

    No full text

    Places in Information Science

    Get PDF
    Human spatial concepts, such as the concept of place, are not immediately translatable to the geometric foundations of spatial databases and information systems developed over the past 50 years. These systems typically rest on the concepts of objects and fields, both bound to coordinates, as two general paradigms of geographic representation. The match between notions of place occurring in everyday where questions and the data available to answer such questions is unclear and hinders progress in place-based information systems. This is particularly true in novel application areas such as the Digital Humanities or speech-based human–computer interaction, but also for location-based services. Although this shortcoming has been observed before, we approach the challenges of relating places to information system representations with a fresh view, based on a set of core concepts of spatial information. These concepts have been proposed in information science with the intent of serving human–machine spatial question asking and answering. Clarifying the relationship of the notion of place to these concepts is a significant step toward geographically intelligent systems. The main result of the article is a demonstration that the notion of place fits existing concepts of spatial information, when these are adequately exploited and combined

    The Habitability of Proxima Centauri b: Environmental States and Observational Discriminants

    No full text
    Proxima Centauri b provides an unprecedented opportunity to understand the evolution and nature of terrestrial planets orbiting M dwarfs. Although Proxima Cen b orbits within its star's habitable zone, multiple plausible evolutionary paths could have generated different environments that may or may not be habitable. Here, we use 1-D coupled climate-photochemical models to generate self-consistent atmospheres for several evolutionary scenarios, including high-O2, high-CO2, and more Earth-like atmospheres, with both oxic and anoxic compositions. We show that these modeled environments can be habitable or uninhabitable at Proxima Cen b's position in the habitable zone. We use radiative transfer models to generate synthetic spectra and thermal phase curves for these simulated environments, and use instrument models to explore our ability to discriminate between possible planetary states. These results are applicable not only to Proxima Cen b but to other terrestrial planets orbiting M dwarfs. Thermal phase curves may provide the first constraint on the existence of an atmosphere. We find that James Webb Space Telescope (JWST) observations longward of 10 μm could characterize atmospheric heat transport and molecular composition. Detection of ocean glint is unlikely with JWST but may be within the reach of larger-aperture telescopes. Direct imaging spectra may detect O4 absorption, which is diagnostic of massive water loss and O2 retention, rather than a photosynthetic biosphere. Similarly, strong CO2 and CO bands at wavelengths shortward of 2.5 μm would indicate a CO2-dominated atmosphere. If the planet is habitable and volatile-rich, direct imaging will be the best means of detecting habitability. Earth-like planets with microbial biospheres may be identified by the presence of CH4-which has a longer atmospheric lifetime under Proxima Centauri's incident UV-and either photosynthetically produced O2 or a hydrocarbon haze layer. Key Words: Planetary habitability and biosignatures-Planetary atmospheres-Exoplanets-Spectroscopic biosignatures-Planetary science-Proxima Centauri b. Astrobiology 18, 133-189
    corecore