45 research outputs found

    Instability of the rhodium magnetic moment as origin of the metamagnetic phase transition in alpha-FeRh

    Full text link
    Based on ab initio total energy calculations we show that two magnetic states of rhodium atoms together with competing ferromagnetic and antiferromagnetic exchange interactions are responsible for a temperature induced metamagnetic phase transition, which experimentally is observed for stoichiometric alpha-FeRh. A first-principle spin-based model allows to reproduce this first-order metamagnetic transition by means of Monte Carlo simulations. Further inclusion of spacial variation of exchange parameters leads to a realistic description of the experimental magneto-volume effects in alpha-FeRh.Comment: 10 pages, 13 figures, accepted for publication in Phys. Rev.

    Updated tests of scaling and universality for the spin-spin correlations in the 2D and 3D spin-S Ising models using high-temperature expansions

    Full text link
    We have extended, from order 12 through order 25, the high-temperature series expansions (in zero magnetic field) for the spin-spin correlations of the spin-S Ising models on the square, simple-cubic and body-centered-cubic lattices. On the basis of this large set of data, we confirm accurately the validity of the scaling and universality hypotheses by resuming several tests which involve the correlation function, its moments and the exponential or the second-moment correlation-lengths.Comment: 21 pages, 8 figure

    Phase Diagram of the Spin-3/2 Blume-Capel Model

    No full text

    Color VQ-based Image Compression by Manifold Learning

    No full text
    International audienceWhen the amount of color data is reduced in a lossy compression scheme, the question of the use of a color distance is crucial, since no total order exists in IRn, n > 1. Yet, all existing color distance formulae have severe application limitation, even if they are widely used, and not necesseraly within the initial context they have been developed for. In this paper, a manifold learning approach is applied to reduce the dimension of data in a Vector Quantization approach to obtain data expressed in IR. Three different techniques are applied before construct the codebook. Comparaisons with the standard LBG-based VQ method are performed to judge the performance of the proposed approach using PSNR, MS-SSIM and VSNR measures

    Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management

    No full text
    The study and management of emerging infectious diseases (EIDs) and of biological invasions both address the ecology of human-associated biological phenomena in a rapidly changing world. However, the two fields work mostly in parallel rather than in concert. This review explores how the general phenomenon of an organism rapidly increasing in range or abundance is caused, highlights the similarities and differences between research on EIDs and invasions, and discusses shared management insights and approaches. EIDs can arise by: (i) crossing geographical barriers due to human-mediated dispersal, (ii) crossing compatibility barriers due to evolution, and (iii) lifting of environmental barriers due to environmental change. All these processes can be implicated in biological invasions, but only the first defines them. Research on EIDs is embedded within the One Health concept—the notion that human, animal and ecosystem health are interrelated and that holistic approaches encompassing all three components are needed to respond to threats to human well-being. We argue that for sustainable development, biological invasions should be explicitly considered within One Health. Management goals for the fields are the same, and direct collaborations between invasion scientists, disease ecologists and epidemiologists on modelling, risk assessment, monitoring and management would be mutually beneficial

    Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management

    Get PDF
    The study and management of emerging infectious diseases (EIDs) and of biological invasions both address the ecology of human-associated biological phenomena in a rapidly changing world. However, the two fields work mostly in parallel rather than in concert. This review explores how the general phenomenon of an organism rapidly increasing in range or abundance is caused, highlights the similarities and differences between research on EIDs and invasions, and discusses shared management insights and approaches. EIDs can arise by: (i) crossing geographical barriers due to human-mediated dispersal, (ii) crossing compatibility barriers due to evolution, and (iii) lifting of environmental barriers due to environmental change. All these processes can be implicated in biological invasions, but only the first defines them. Research on EIDs is embedded within the One Health concept—the notion that human, animal and ecosystem health are interrelated and that holistic approaches encompassing all three components are needed to respond to threats to human well-being. We argue that for sustainable development, biological invasions should be explicitly considered within One Health. Management goals for the fields are the same, and direct collaborations between invasion scientists, disease ecologists and epidemiologists on modelling, risk assessment, monitoring and management would be mutually beneficial

    Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management

    Get PDF
    The study and management of emerging infectious diseases (EIDs) and of biological invasions both address the ecology of human-associated biological phenomena in a rapidly changing world. However, the two fields work mostly in parallel rather than in concert. This review explores how the general phenomenon of an organism rapidly increasing in range or abundance is caused, highlights the similarities and differences between research on EIDs and invasions, and discusses shared management insights and approaches. EIDs can arise by: (i) crossing geographical barriers due to human-mediated dispersal, (ii) crossing compatibility barriers due to evolution, and (iii) lifting of environmental barriers due to environmental change. All these processes can be implicated in biological invasions, but only the first defines them. Research on EIDs is embedded within the One Health concept—the notion that human, animal and ecosystem health are interrelated and that holistic approaches encompassing all three components are needed to respond to threats to human well-being. We argue that for sustainable development, biological invasions should be explicitly considered within One Health. Management goals for the fields are the same, and direct collaborations between invasion scientists, disease ecologists and epidemiologists on modelling, risk assessment, monitoring and management would be mutually beneficial
    corecore