56 research outputs found

    Universality of the thermodynamic Casimir effect

    Full text link
    Recently a nonuniversal character of the leading spatial behavior of the thermodynamic Casimir force has been reported [X. S. Chen and V. Dohm, Phys. Rev. E {\bf 66}, 016102 (2002)]. We reconsider the arguments leading to this observation and show that there is no such leading nonuniversal term in systems with short-ranged interactions if one treats properly the effects generated by a sharp momentum cutoff in the Fourier transform of the interaction potential. We also conclude that lattice and continuum models then produce results in mutual agreement independent of the cutoff scheme, contrary to the aforementioned report. All results are consistent with the {\em universal} character of the Casimir force in systems with short-ranged interactions. The effects due to dispersion forces are discussed for systems with periodic or realistic boundary conditions. In contrast to systems with short-ranged interactions, for L/ξ1L/\xi \gg 1 one observes leading finite-size contributions governed by power laws in LL due to the subleading long-ranged character of the interaction, where LL is the finite system size and ξ\xi is the correlation length.Comment: 11 pages, revtex, to appear in Phys. Rev. E 68 (2003

    First-principles study of the effect of charge on the stability of a diamond nanocluster surface

    Get PDF
    Effects of net charge on the stability of the diamond nanocluster are investigated using the first-principles pseudopotential method with the local density approximation. We find that the charged nanocluster favors the diamond phase over the reconstruction into a fullerene-like structure. Occupying the dangling bond orbitals in the outermost surface, the excess charge can stabilize the bare diamond surface and destabilize the C-H bond on the hydrogenated surface. In combination with recent experimental results, our calculations suggest that negative charging could promote the nucleation and further growth of low-pressure diamond.open8

    Geometry and material effects in Casimir physics - Scattering theory

    Full text link
    We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable to objects immersed in media other than vacuum, to nonzero temperatures, and to spatial arrangements in which one object is enclosed in another. Our method combines each object's classical electromagnetic scattering amplitude with universal translation matrices, which convert between the bases used to calculate scattering for each object, but are otherwise independent of the details of the individual objects. This approach, which combines methods of statistical physics and scattering theory, is well suited to analyze many diverse phenomena. We illustrate its power and versatility by a number of examples, which show how the interplay of geometry and material properties helps to understand and control Casimir forces. We also examine whether electrodynamic Casimir forces can lead to stable levitation. Neglecting permeabilities, we prove that any equilibrium position of objects subject to such forces is unstable if the permittivities of all objects are higher or lower than that of the enveloping medium; the former being the generic case for ordinary materials in vacuum.Comment: 44 pages, 11 figures, to appear in upcoming Lecture Notes in Physics volume in Casimir physic

    Observation of the Ξc+\Xi_c^+ Charmed Baryon Decays to Σ+Kπ+\Sigma^+ K^-\pi^+, Σ+Kˉ0\Sigma^+ \bar{K}^{*0}, and ΛKπ+π+\Lambda K^-\pi^+\pi^+

    Full text link
    We have observed two new decay modes of the charmed baryon Ξc+\Xi_c^+ into Σ+Kπ+\Sigma^+ K^-\pi^+ and Σ+Kˉ0\Sigma^+ \bar{K}^{*0} using data collected with the CLEO II detector. We also present the first measurement of the branching fraction for the previously observed decay mode Ξc+ΛKπ+π+\Xi_c^+\to\Lambda K^-\pi^+\pi^+. The branching fractions for these three modes relative to Ξc+Ξπ+π+\Xi_c^+\to\Xi^-\pi^+\pi^+ are measured to be 1.18±0.26±0.171.18 \pm 0.26 \pm 0.17, 0.92±0.27±0.140.92 \pm 0.27 \pm 0.14, and 0.58±0.16±0.070.58 \pm 0.16 \pm 0.07, respectively.Comment: 12 page uuencoded postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Production and Decay of D_1(2420)^0 and D_2^*(2460)^0

    Get PDF
    We have investigated D+πD^{+}\pi^{-} and D+πD^{*+}\pi^{-} final states and observed the two established L=1L=1 charmed mesons, the D1(2420)0D_1(2420)^0 with mass 242122+1+22421^{+1+2}_{-2-2} MeV/c2^{2} and width 2053+6+320^{+6+3}_{-5-3} MeV/c2^{2} and the D2(2460)0D_2^*(2460)^0 with mass 2465±3±32465 \pm 3 \pm 3 MeV/c2^{2} and width 2876+8+628^{+8+6}_{-7-6} MeV/c2^{2}. Properties of these final states, including their decay angular distributions and spin-parity assignments, have been studied. We identify these two mesons as the jlight=3/2j_{light}=3/2 doublet predicted by HQET. We also obtain constraints on {\footnotesize ΓS/(ΓS+ΓD)\Gamma_S/(\Gamma_S + \Gamma_D)} as a function of the cosine of the relative phase of the two amplitudes in the D1(2420)0D_1(2420)^0 decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by sending mail to: [email protected]

    Measurement of the branching fraction for Υ(1S)τ+τ\Upsilon (1S) \to \tau^+ \tau^-

    Full text link
    We have studied the leptonic decay of the Υ(1S)\Upsilon (1S) resonance into tau pairs using the CLEO II detector. A clean sample of tau pair events is identified via events containing two charged particles where exactly one of the particles is an identified electron. We find B(Υ(1S)τ+τ)=(2.61 ± 0.12 +0.090.13)B(\Upsilon(1S) \to \tau^+ \tau^-) = (2.61~\pm~0.12~{+0.09\atop{-0.13}})%. The result is consistent with expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS 94/1297, CLEO 94-20 (submitted to Physics Letters B

    Measurement of the Decay Asymmetry Parameters in Λc+Λπ+\Lambda_c^+ \to \Lambda\pi^+ and Λc+Σ+π0\Lambda_c^+ \to \Sigma^+\pi^0

    Full text link
    We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\ decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for the decay mode Λc+Λπ+\Lambda_c^+ \to \Lambda\pi^+ and \aLC = -0.45\pm 0.31 \pm 0.06 for the decay mode ΛcΣ+π0\Lambda_c \to \Sigma^+\pi^0 . By combining these measurements with the previously measured decay rates, we have extracted the parity-violating and parity-conserving amplitudes. These amplitudes are used to test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures as uuencoded postscript. Also available as http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p
    corecore