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Ab initio full charge-density study of the atomic volume ofa-phase
Fr, Ra, Ac, Th, Pa, U, Np, and Pu
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Research Institute for Solid State Physics, P. O. Box 49, H-1525 Budapest, Hungary

H. L. Skriver
Center for Atomic-scale Materials Physics and Physics Department, Technical University of Denmark, DK-2800 Lyngby, Denmark

~Received 2 November 1995!

We have used a full charge-density technique based on the linear muffin-tin orbitals method in first-
principles calculations of the atomic volumes of the light actinides including Fr, Ra, and Ac in their low-
temperature crystallographic phases. The good agreement between the theoretical and experimental values
along the series support the picture of itinerant 5f electronic states in Th to Pu. The increased deviation
between theory and experiment found in Np and Pu may be an indication of correlation effects not included in
the local density approximation.@S0163-1829~97!06408-4#

I. INTRODUCTION

To date, it is generally accepted that the light actinide
metals form a transition series with a substantialf bonding.
Part of the support for such an itinerant picture of the 5f
electrons is supplied by the fact that modern one-electron
theory yields atomic volumes for these elements which agree
quite well with the experimental values.1,2 Furthermore,
since f bonding is expected to give rise to complex crystal
structures the appearance of tetragonal, orthorhombic, and
monoclinic structures in the actinide series lends additional
support to the itinerant 5f picture. In fact, even the fcc struc-
ture of Th is caused by the 5f electrons,3 and therefore all
the light actinides from Th to Pu are considered to form a
5 f transition series.

In spite of their success, the validity of the original linear
muffin-tin orbitals~LMTO! calculations1 may be questioned
because the authors used the atomic sphere approximation
~ASA!, neglected spin-orbit interaction, and treated only the
close-packed fcc phase. It is therefore not surprising that the
equilibrium volumes of the light actinides have been recal-
culated several times, gradually reducing the number of ap-
proximations involved.4–9 However, although the calcula-
tional schemes have progressed considerably it is only
recently that one has been able to calculate the atomic vol-
umes of U, Np, and Pu in theira phases.10

To calculate the equilibrium volumes of thea phases of
the actinide metals with up to 16 atoms per primitive cell one
needs not only efficient computer codes but also to go be-
yond the ASA. One approach is to use a full-potential LMTO
method as is done by Wills and co-workers.6,8,9Another is to
retain some of the efficiency of the ASA by using a spheri-
cally symmetric potential to calculate the kinetic energy and
to generate the nonspherically symmetric charge density that
is subsequently used in the evaluation of the remainder of the
energy functional. In the present work we have adopted the
latter full charge-density~FCD! approach, which was origi-
nally implemented in order to treat lattice distortions as well
as open crystal structures such as those found in the actinide

series. The FCD method has been applied successfully in the
calculation of the surface energies of the 4d metals11 and the
light actinides,12 as well as the atomic volumes and elastic
constants of the 4d metals.13

The calculated atomic volumes of the light actinides
found in the literature show considerable scatter. For in-
stance, the local-density atomic radius for fcc Th varies from
3.79 bohr in the original LMTO-ASA calculation1 to 3.52
bohr in the recent full-potential calculation.9 The question is
therefore whether one can trust the ASA result, which devi-
ates by only 1% from the experimental value of 3.76 bohr,14

or whether the presumably more accurate full-potential re-
sult, which deviates by as much as 6%, means that the local-
density approximation is inadequate for the light actinides.
The full-potential calculations9 also include results obtained
by the generalized gradient correction to the local-density
approximation and this improves the agreement with experi-
ment for Th to 3%. However, in view of the success of the
full-potential calculations for the 4d series15 where the gra-
dient correction approximation for Zr, which has approxi-
mately the same number ofd electron as Th, leads to com-
plete agreement with experiment, deviations of 6% and 3%
for Th indicate either inadequate numerical approximations
or a failure of the local density and the generalized gradient
correction approximations.

In this situation it is important to evaluate the atomic radii
of the light actinides by means of a one-electron method that
is different from the previously applied methods and thereby
obtain a second opinion, as it were. The FCD method is one
such method that has been thoroughly tested, e.g., in calcu-
lations of the atomic radii of the 4d metals. It is found that
the local-density FCD radii13 of the 4d metals from Y to Pd
on the average are 1% larger than the corresponding local-
density full-potential values15 and the deviation is traced to
the fact that the kinetic energy in the FCD approach is cal-
culated within the ASA. Since the remainder of the energy
functional is evaluated correctly, also in crystal structures
that are not close packed, we expect the FCD approch to
yield atomic radii that are within 1% of the true local-density
radii for the light actinides.
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II. FULL CHARGE-DENSITY METHOD

In the full charge-density method11 the kinetic energy of
the local-density functional is calculated completely within
the ASA, except for the inclusion of the so-called combined
correction,16,17 by means of a spherically symmetrized
charge density, while the Coulomb and the exchange and
correlation contributions are calculated by means of the com-
plete, nonspherically symmetric charge density within non-
overlapping, space-filling Wigner-Seitz cells. In the first
application11,12 the charge density was expressed in terms of
an LMTO-ASA one-center expansion corrected in the outer
corners of the Wigner-Seitz~WS! cell by a simple polyno-
mium to maintain normalization over the cell. Here, we im-
prove the accuracy of the one-center expansion by the use of
the tail-cancellation theorem to correct the charge density in
the overlap regions. In the following we give a brief outline
of the method with special emphasis on the construction of
the charge density.

A. Energy functional

The FCD energy functional is based on a spherically sym-
metric atomic-sphere potential. Within the local-density ap-
proximation we define

EFCD@n~r !#5(
R

TASA
R 1E@n~r !#, ~1!

where

TASA
R 5EEF

eNR~e!de2
1

A4p
E
SR

n0
R,ASA~r !Vef f

R ~r !d3r ~2!

is the kinetic energy per site evaluated in the ASA and

E@n~r !#5E vext~r !n~r !dr1
1

2E E n~r !n~r 8!

ur2r 8u
drdr 8

1E exc@n~r !#n~r !dr . ~3!

In these equationsEF is the Fermi level,NR(e) the site-
projected one-electron-state density,SR the atomic Wigner-
Seitz radius,n0

R,ASA(r ) the l50 component of the electronic
charge density at the siteR, Veff

R (r ) the effective one-electron
potential corresponding to the ASA energy functional,
vext(r ) the potential from the nuclei,n(r ) the total electronic
charge density that is constructed from the output of a self-
consistent ASA calculation and reflects the proper symmetry
of the lattice, andexc stands for the exchange-correlation
energy density.

B. Charge density

It was shown by Andersenet al.18,19 that even for open
structures such as the diamond structure one may obtain
good charge densities by means of an LMTO-ASA potential.
In their approach, however, the output charge density is
given in a multicenter form which requires double lattice
summations and is therefore less suitable in total energy cal-
culations. Our aim is to rewrite the output ASA charge den-
sity in a one-center form

nR~rR!5(
L

nL
R~r R!YL~ r̂R!, ~4!

whereL is shorthand notation for (l ,m), YL is a real har-
monic, andrR is measured from the origin of the cell atR,
i.e., rR5r2R. This expression is simple to evaluate and well
suited for the integration in the Wigner-Seitz cell atR.

The muffin-tin ~MT! orbitals may be defined19 as

xRL~E,k,rR!5YL~ r̂R!H wRl~E,r R!1PRl~E,k! j l~k,r R!

for r R<SR

nl~k,r R! for r R.SR ,
~5!

wherewRl(E,r R) is solution of the radial Schro¨dinger equa-
tion, k2[E2V0 is the ‘‘kinetic energy in the interstitial re-
gion,’’ j l andnl are, respectively, regular and irregular solu-
tions at the origin of the radial wave equation for the
constant potentialV0 ~the muffin-tin zero!, andPRl(E,k) is
the potential function. If the secular equation is satisfied and
the MT spheres do not overlap, the wave function is given
within one MT sphere either by the multicenter

c~E,r !5(
RL

xRL~E,k,rR!uRL ~6!

or by the one-center form

c~E,rR8!5(
L8

wR8L8~E,k,rR8!uR8L8 if r R8<SR8. ~7!

In the case of overlapping spheres, there is, in the region of
overlap, an uncanceled remainder which is the superposition
of the functions

f RL~E,k,rR![xRL~E,k,rR!2nL~k,rR!

5 f Rl~E,k,r R!YL~ r̂R!QR~rR! ~8!

coming from the neighboring sites.19 Here,

f Rl~E,k,r R!5wRl~E,r R!1PRl~E,k! j l~k,r R!2nl~k,r R!,
~9!

andQR(rR) is a step function, which is 1 inside and zero
outside the MT sphere atR. Thus, in the case of overlapping
spheres centered atR the wave function atR850 can be
written as19

c~E,r !5(
L8

w0L8~E,k,r !u0L8

1(
R

(
L8

f RL8~E,k,rR!uRL8 if r<S0 .

~10!

Here and in the following we use the notationr for r0.
In the conventional LMTO-ASA method with energy-

independent MTOs and withk250 the functionf Rl(r R) has
the form
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f Rl~r R!5FwRl~EnRl ,r R!2ẇRl~EnRl ,r R!~EnRl2CRl!

2S r RS D 2 l21

A2DRl /SGF11
EnRl2CRl

DRl
gRlG , ~11!

where ẇRl(EnRl ,r R) is the orthogonal energy derivative of
the normalized functionwRl(EnRl ,r R), EnRl ,CRl , gRl , and
DRl are the usual LMTO potential parameters, whileS is the
average Wigner-Seitz radius.

If the radial functionf Rl(r R) may be approximated by a
linear combination of Bessel functions

f Rl~r R!5(
i
CRl
i Kl~kir R!, ~12!

~we use the spherical Hankel functions of first kind with
ki
2,020!, we may use the expansion theorem to express the
functions centered at the neighboring sitesR with the coor-
dinates measured from the origin

f Rl~r R!YL~ r̂R!5(
L8

f RLL8~r !YL8~ r̂ !. ~13!

For theQR(rR) function this expansion may be carried out
analytically, it is shown in the Appendix. After summing up
the square of the wave functions for the occupied states and
after some manipulation we obtain the following expresssion
for the partial component of the charge density in Eq.~4!:

nL
0~r !5 (

pq
R8L8R9L9

GR8L8R9L9
pqL

~r !mR8L8R9L9
pq . ~14!

Here, the functionGR8L8R9L9
pqL (r ) may be expressed in terms

of wRl(EnRl ,r ), ẇRl(EnRl ,r ), f RLL8(r ), and the expansion
coefficients of the functionQR(rR). These expressions and
the definition of the energy moments,mR8L8R9L9

pq are given in
the Appendix. A few examples of the application of the
above formula for calculating charge density contours are
given in Ref. 21.

C. Coulomb energy

To calculate the Coulomb energy in Eq.~3! we devide the
solid into nonoverlapping, space filling cells around each lat-
tice site. The total electrostatic energy of the system may be
divided into contributionsER belonging to the cell atR,
which are compounded ofintracell and intercell terms. For
simplicity, we only give expressions for the contribution cor-
responding to the cell centered at the origin, i.e.,

E05Eintra
0 @n0#1Einter

0 @$QL
R%#, ~15!

where we indicate that the intercell energy contribution de-
pends on the multipole moments defined as

QL
R5

~4p!1/2

2l11 E
W2S cell atR

S r RS D lnR~rR!YL~ r̂R!drR .

~16!

The intracell energy may be determined in the usual way,
e.g., by numerical solution of thel -dependent Poisson equa-

tion inside the bounding spheres, while the intercell interac-
tion energy belonging to the cell at the origin may be written
in the following form:22,23

Einter
0 @$QL

R%#52
1

2S(L (
R

1

2l11 S bRS D lYL~ b̂R!

3 (
L8,L9

QL8
0 4p~2l 921!!!

~2l21!!! ~2l 821!!!

3CL8,L9
L d l 9,l1 l 8(

L-
SL9,L-~R1bR!QL-

R ,

~17!

whereSL,L8(R) are the conventional LMTO structure con-
stants andCL8,L9

L a real-harmonic Gaunt coefficient. In Eq.
~17! R runs over the lattice vectors. For neighboring cells
with overlapping bounding spheres~with the radii SC

0 and
SC
R) the vectorbR must be larger than zero to ensure thel
convergence of the summations. An optimal chioce forbR is

bR1R5S 11
1

2a D ~SC
01SC

R!. ~18!

A resonable choice for the parametera is described in Ref.
23.

D. Computational details

In the calculations we used the scalar-relativistic, second-
order LMTO Hamiltonian within the frozen-core approxima-
tion and included the combined correction.16–18The valence
electrons were treated self-consistently within the local-
density approximation~LDA ! with the Perdew-Zunger
parametrization24 of the results of Ceperley and Alder.25 We
included the 6p semicore states~first panel! together with the
5 f , 6d, and 7s states~second panel! as band states. In the
first panel we down-folded26,27 the s, d, and f states and in
the second only thep states. This procedure accounts cor-
rectly for the important weak hybrization in the occupied
parts of the bandstructure and reduces the rank of the eigen-
value problem to that of the number of active orbitals, i.e.,
three for the lower panel and 13 for the upper panel. The
k-point sampling was performed on a uniform grid in the
irreducible wedge of the Brillouin zones of thea structures
using 225, 675, 392, 75, and 48k points for Th, Pa, U, Np,
and Pu, respectively.

III. ATOMIC VOLUME OF THE ACTINIDES

The results of the full charge-density calculations for the
early actinides including Fr, Ra, and Ac in their low-
temperature crystallographica phases are presented in Fig. 1
and Table I. It is seen that the agreement between the calcu-
lated equilibrium atomic Wigner-Seits radii and those ob-
tained experimentally14 is quite satisfactory over the whole
series. Because the calculations treat the 5f electrons as itin-
erant and not as localized, corelike states, in which case one
finds extremely high volumes,5 one may conclude that the
5 f electrons in the early actinides, i.e., before Am, are bond-
ing electrons and that local-density theory gives a good de-
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scription of the ground state of these metals.
In the comparison between theory and experiments one

finds a systematic overestimate of the binding, i.e., lowering
of the calculated volume relative to the experimental volume,
as one approaches Pu. One also observes that this trend is
unaffected by the appearance of the distorteda phases in
Pa—Pu. The deviation is therefore most easily interpreted as
due to correlation effects not included in the presently used
local-density approximation. However, before one reaches
such a conclusion one must ascertain that the deviation may

not be caused by approximations, numerical or otherwise, in
the technique used to solve the effective one-electron~Kohn-
Sham! equations, i.e., that the calculated atomic volumes
represent a close approximation to the true local-density val-
ues.

The only major approximation that remains in our imple-
mentation of the full charge-density method is the neglect of
spin-orbit coupling. The effect of this approximation has
been addressed in LMTO-ASA calculations,4,5 Table I, and
in full-potential calculations.6 Brooks4 found an increase in
atomic volume between Np and Pu and concluded that part
of the deviation in Pu could be accounted for by spin-orbit
coupling. A similar conclusion may be reached from the cal-
culations by So¨derlind et al.5 In contrast, the work of Wills
and Eriksson,6 based on fully relativistic calculations, con-
cluded that spin-orbit coupling did not lead to an increase in
atomic volume between Np and Pu and therefore could not
account for the deviation between theory and experiments in
these metals.

Recently, Wills and co-workers6,8,9 have calculated the
atomic volumes of Th, Pa, U, and Np in theira phases by
means of the full-potential LMTO method. As may be seen
in Fig. 2 and Table I, where we compare the full potential
and full charge-density results, the agreement with the
present atomic volumes is not good. In fact, because the
full-potential method involves fewer approximations than the
present full charge-density technique, it would appear that
the 6% difference in calculated atomic radius~18% in vol-
ume! for Th disqualifies the present values for the whole
series as the true local-density results. Obviously the close
agreement between theory and experiment obtained in the

FIG. 1. Full charge-density~FCD! results for the equilibrium
Wigner-Seitz radii of the first eight elements in the seventh row of
the periodic table compared with experimental values14. The calcu-
lations have been performed in the LDA for the crystallographic
a phases indicated in Pearson notation at the top of the figure.

TABLE I. Atomic Wigner-Seitz radii in bohr for the light actinides in their low-temperature crystallo-
graphic phases, upper panel, and in the fcc structure, lower panel. The calculated values were all obtained
within the local-density approximation. In the upper panel we list full charge-density and full-potential results
and in the lower panel ASA results.

Fr Ra Ac Th Pa U Np Pu
Structure cI2 cI2 cF4 cF4 tI2 oC4 oP8 mP16

Expt.a 4.790 3.922 3.756 3.422 3.221 3.142 3.182

Present 5.570 4.778 4.130 3.748 3.407 3.198 3.066 3.018
Wills b 3.558 3.281 3.097
Erikssonc 3.64 3.38 3.12 2.99
Söderlindd 3.517 3.280 3.092 2.991

Structure cF4 cF4 cF4 cF4 cF4 cF4 cF4 cF4

Skrivere 5.425 4.730 4.165 3.785 3.445 3.255 3.030 2.980
Söderlindf 3.814 3.496 3.256 3.107 3.015
Brooksg 4.188 3.773 3.396 3.227 3.097 3.091
Söderlindh 3.799 3.487 3.276 3.129 3.151

aReference 14.
bTable I, Ref. 6.
cFigure 1, Ref. 8 and Fig. 11, Ref. 6.
dLocal-density results, Ref. 9.
ePure ASA results, Ref. 1.
fASA plus combined correction, Ref. 5.
gASA plus spin orbit, Ref. 4.
hASA plus combined correction and spin orbit, Ref. 5.
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present work is not a measure of the accuracy of the physical
and numerical approximations of the FCD approach, but if
numerical accuracy can be established it is a measure of the
validity of the local-density approximation.

The four sets of LMTO-ASA calculations presented in
Table I assumed the fcc structure,1 included spin-orbit
coupling,4 combined-correction,5 or combined-correction
and spin-orbit coupling.5 These calculations all made use of
the pressure relation28 rather than the total energy to obtain
equilibrium radii, and this procedure is relatively insensitive
to the pressence of the 6p semicore states to be discussed
below. The atomic radii obtained in these calculations agree
with each other to within less than 1%, which may be con-
sidered satisfactory. The only exception is Pu, where spin-
orbit coupling leads to an increase in atomic radius of 5%.
Thus, if one neglects Pu, it seems that small deviations in
numerical techniques results in a scatter of approximately
1% in the calculated atomic radii. Hence, we may consider
this number as anad hocmeasure of confidence.

Since we cannot assess the accuracy of the numerical
implementation of the full-potential method6,8,9 we must
judge the accuracy of the FCD calculations on the basis of
results for elements other than the actinides. Recently, we
have calculated the atomic volumes of the 4d metals by the
exact procedure used here for the light actinides, i.e., 4p
semicore, two energy panels, ands, p, d, and f orbitals, and
compared the results with full-potential calculations. We find
that the FCD method yields atomic volumes for the metals
Y, Zr, Nb, Mo, Tc, Ru, Rh, and Pd, which on the average are
only 1% larger than the corresponding full-potential
calculations.15 Hence, we expect the full-charge density re-
sults presented in Figs. 1 and 2 to represent an accurate es-
timate of the true local-density atomic volumes of the ac-
tinide metals in theira phases.

IV. CONCLUSION

Based on the above considerations, it appears that the full
charge-density results, shown in Fig. 1, represent a close
approximation to the true local-density values, at least for the

the ealier actinides, Fr–U, where spin-orbit coupling does
not affect the volumes in a significant way. Furthermore, the
fact that the calculated volume is a decreasing function of the
atomic number similar to the fcc results means that in the
LDA the crystal structures are not responsible for the in-
creasing difference between theory and experiment as one
approaches Pu. Based on earlier LMTO-ASA calculations it
seems that spin-orbit coupling may explain half of the dis-
crepancy in Pu and that therefore the remainder may be at-
tributed to correlation effects not included in the local-
density approximation. However, such a conclusion must
await calculations including not only the correct crystal
structures for Np and Pu but also spin-orbit coupling.
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APPENDIX

The step functionQR(rR) in Eq. ~8! may be expanded in
terms of real harmonics, i.e.,

QR~rR!5(
L

QRL~r !YL~ r̂ !,

where the partial componentsQRL(r ) are

QRL~r !5@p~2l11!#1/2
1

2l (k> l /2

l

~21!k1 l S lkD S 2kl D

3

12S r 21R22SR
2

2rR D 2k2 l11

2k2 l11
D0m
l ~R̂!

andD0m
l (R̂) are the matrix elements of finite rotations de-

fined, for example, in Ref. 29.
The energy moments in Eq.~14! are given by

mR8L8R9L9
pq

5 (
j ,occ.

~Ej2EnR8L8!
pbR8L8

j* ~Ej2EnR9L9!
qbR9L9

j ,

wherebRL
j denote the eigenvectors andEj the one-electron

energies obtained from the band calculation.
The quantitiesGR8L8R9L9

pqL (r ) in Eq. ~14! are defined as

GR8L8R9L9
00L

~r !5dR80dR90CL8L9
L w0l 8~r !w0l 9~r !1dR80w0l 8~r !

3(
L-

CL8L-
L FR9L9

L- ~r !1dR90

3(
L-

CL-L9
L FR8L8

L- ~r !w0l 9~r !

1(
L-

FR8L8
L- ~r !(

L99
CL-L99
L FR9L9

L99 ~r !,

FIG. 2. Comparison between calculated Wigner-Seitz radii for
the light actinides in their crystallographisa phases. Open circles
from Ref. 6, open diamonds from Ref. 9, open triangles from Ref.
8, and filled squares from the present FCD calculations. Open
circles with solid line are experimental values from Ref. 14.
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GR8L8R9L9
01L

~r !5dR80dR90CL8L9
L w0l 8~r !ẇ0l 9~r !1dR90

3(
L-

CL-L9
L FR8L8

L- ~r !ẇ0l 9~r !,

GR8L8R9L9
10L

~r !5GR9L9R8L8
01L

~r !,

and

GR8L8R9L9
11L

~r !5dR80dR90CL8L9
L ẇ0l 8~r !ẇ0l 9~r !.

Here

FR8L8
L

~r !5 (
L9L-

CL9L-
L f R8L8L9~r !QR8L-~r !,

with f R8L8L9
(r ) defined from Eq.~13!. In these expressions

R8 and R9 run over neighbors with overlapping ASA
spheres.
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