90 research outputs found

    Constraining the dark energy dynamics with the cosmic microwave background bispectrum

    Full text link
    We consider the influence of the dark energy dynamics at the onset of cosmic acceleration on the Cosmic Microwave Background (CMB) bispectrum, through the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole ll: we show that it is non-zero in a narrow interval centered at a redshift zz satisfying the relation l/r(z)kNL(z)l/r(z)\simeq k_{NL}(z), where the wavenumber corresponds to the scale entering the non-linear phase, and rr is the cosmological comoving distance. The relevant redshift interval is in the range 0.1\lsim z\lsim 2 for multipoles 1000\gsim\ell\gsim 100; the signal amplitude, reflecting the perturbation dynamics, is a function of the cosmological expansion rate at those epochs, probing the dark energy equation of state redshift dependence independently on its present value. We provide a worked example by considering tracking inverse power law and SUGRA Quintessence scenarios, having sensibly different redshift dynamics and respecting all the present observational constraints. For scenarios having the same present equation of state, we find that the effect described above induces a projection feature which makes the bispectra shifted by several tens of multipoles, about 10 times more than the corresponding effect on the ordinary CMB angular power spectrum.Comment: 15 pages, 7 figures, matching version accepted by Physical Review D, one figure improve

    Higher spin quaternion waves in the Klein-Gordon theory

    Full text link
    Electromagnetic interactions are discussed in the context of the Klein-Gordon fermion equation. The Mott scattering amplitude is derived in leading order perturbation theory and the result of the Dirac theory is reproduced except for an overall factor of sixteen. The discrepancy is not resolved as the study points into another direction. The vertex structures involved in the scattering calculations indicate the relevance of a modified Klein-Gordon equation, which takes into account the number of polarization states of the considered quantum field. In this equation the d'Alembertian is acting on quaternion-like plane waves, which can be generalized to representations of arbitrary spin. The method provides the same relation between mass and spin that has been found previously by Majorana, Gelfand, and Yaglom in infinite spin theories

    Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea)

    Get PDF
    International audienceRates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach

    Weak lensing in generalized gravity theories

    Get PDF
    We extend the theory of weak gravitational lensing to cosmologies with generalized gravity, described in the Lagrangian by a generic function depending on the Ricci scalar and a nonminimal coupled scalar field. We work out the generalized Poisson equations relating the dynamics of the fluctuating components to the two gauge-invariant scalar gravitational potentials, fixing the contributions from the modified background expansion and fluctuations. We show how the lensing equation gets modified by the cosmic expansion as well as by the presence of anisotropic stress, which is non-null at the linear level both in scalar-tensor gravity and in theories where the gravitational Lagrangian term features a nonminimal dependence on the Ricci scalar. Starting from the geodesic deviation, we derive the generalized expressions for the shear tensor and projected lensing potential, encoding the spacetime variation of the effective gravitational constant and isolating the contribution of the anisotropic stress, which introduces a correction due to the spatial correlation between the gravitational potentials. Finally, we work out the expressions of the lensing convergence power spectrum as well as the correlation between the lensing potential and the integrated Sachs-Wolfe effect affecting cosmic microwave background total intensity and polarization anisotropies. To illustrate phenomenologically the effects, we work out approximate expressions for the quantities above in extended quintessence scenarios where the scalar field coupled to gravity plays the role of the dark energy

    Representational predicaments for employees: Their impact on perceptions of supervisors\u27 individualized consideration and on employee job satisfaction

    Get PDF
    A representational predicament for a subordinate vis-à-vis his or her immediate superior involves perceptual incongruence with the superior about the subordinate\u27s work or work context, with unfavourable implications for the employee. An instrument to measure the incidence of two types of representational predicament, being neglected and negative slanting, was developed and then validated through an initial survey of 327 employees. A subsequent substantive survey with a fresh sample of 330 employees largely supported a conceptual model linking being neglected and negative slanting to perceptions of low individualized consideration by superiors and to low overall job satisfaction. The respondents in both surveys were all Hong Kong Chinese. Two case examples drawn from qualitative interviews illustrate and support the conceptual model. Based on the research findings, we recommend some practical exercises to use in training interventions with leaders and subordinates. © 2013 Copyright Taylor and Francis Group, LLC

    The evolution of lung cancer and impact of subclonal selection in TRACERx

    Get PDF
    Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource
    corecore