138 research outputs found

    Descent Relations in Cubic Superstring Field Theory

    Full text link
    The descent relations between string field theory (SFT) vertices are characteristic relations of the operator formulation of SFT and they provide self-consistency of this theory. The descent relations and in the NS fermionic string field theory in the kappa and discrete bases are established. Different regularizations and schemes of calculations are considered and relations between them are discussed.Comment: Replaced to JHEP styl

    String Field Theory Projectors for Fermions of Integral Weight

    Full text link
    The interaction vertex for a fermionic first order system of weights (1,0) such as the twisted bc-system, the fermionic part of N=2 string field theory and the auxiliary \eta\xi system of N=1 strings is formulated in the Moyal basis. In this basis, the Neumann matrices are diagonal; as usual, the eigenvectors are labeled by \kappa\in\R. Oscillators constructed from these eigenvectors make up two Clifford algebras for each nonzero value of \kappa. Using a generalization of the Moyal-Weyl map to the fermionic case, we classify all projectors of the star-algebra which factorize into projectors for each \kappa-subspace. At least for the case of squeezed states we recover the full set of bosonic projectors with this property. Among the subclass of ghost number-homogeneous squeezed state projectors, we find a single class of BPZ-real states parametrized by one (nearly) arbitrary function of \kappa. This class is shown to contain the generalized butterfly states. Furthermore, we elaborate on sufficient and necessary conditions which have to be fulfilled by our projectors in order to constitute surface states. As a byproduct we find that the full star product of N=2 string field theory translates into a canonically normalized continuous tensor product of Moyal-Weyl products up to an overall normalization. The divergent factors arising from the translation to the continuous basis cancel between bosons and fermions in any even dimension.Comment: LaTeX, 1+23 pages, minor improvements, references adde

    UV/IR Mixing for Noncommutative Complex Scalar Field Theory, II (Interaction with Gauge Fields)

    Full text link
    We consider noncommutative analogs of scalar electrodynamics and N=2 D=4 SUSY Yang-Mills theory. We show that one-loop renormalizability of noncommutative scalar electrodynamics requires the scalar potential to be an anticommutator squared. This form of the scalar potential differs from the one expected from the point of view of noncommutative gauge theories with extended SUSY containing a square of commutator. We show that fermion contributions restore the commutator in the scalar potential. This provides one-loop renormalizability of noncommutative N=2 SUSY gauge theory. We demonstrate a presence of non-integrable IR singularities in noncommutative scalar electrodynamics for general coupling constants. We find that for a special ratio of coupling constants these IR singularities vanish. Also we show that IR poles are absent in noncommutative N=2 SUSY gauge theory.Comment: 9 pages, 16 EPS figure

    Quantizing non-Lagrangian gauge theories: an augmentation method

    Get PDF
    We discuss a recently proposed method of quantizing general non-Lagrangian gauge theories. The method can be implemented in many different ways, in particular, it can employ a conversion procedure that turns an original non-Lagrangian field theory in dd dimensions into an equivalent Lagrangian topological field theory in d+1d+1 dimensions. The method involves, besides the classical equations of motion, one more geometric ingredient called the Lagrange anchor. Different Lagrange anchors result in different quantizations of one and the same classical theory. Given the classical equations of motion and Lagrange anchor as input data, a new procedure, called the augmentation, is proposed to quantize non-Lagrangian dynamics. Within the augmentation procedure, the originally non-Lagrangian theory is absorbed by a wider Lagrangian theory on the same space-time manifold. The augmented theory is not generally equivalent to the original one as it has more physical degrees of freedom than the original theory. However, the extra degrees of freedom are factorized out in a certain regular way both at classical and quantum levels. The general techniques are exemplified by quantizing two non-Lagrangian models of physical interest.Comment: 46 pages, minor correction

    Superstar in Noncommutative Superspace via Covariant Quantization of the Superparticle

    Full text link
    A covariant quantization method is developed for the off-shell superparticle in 10 dimensions. On-shell it is consistent with lightcone quantization, while off-shell it gives a noncommutative superspace that realizes non-linearly a hidden 11-dimensional super Poincare symmetry. The non-linear commutation rules are then used to construct the supersymmetric generalization of the covariant Moyal star product in noncommutative superspace. As one of the possible applications, we propose this new product as the star product in supersymmetric string field theory. Furthermore, the formalism introduces new techniques and concepts in noncommutative (super)geometry.Comment: 17 pages, LaTe

    Schnabl's L_0 Operator in the Continuous Basis

    Get PDF
    Following Schnabl's analytic solution to string field theory, we calculate the operators L0,L0{\cal L}_0,{\cal L}_0^\dagger for a scalar field in the continuous κ\kappa basis. We find an explicit and simple expression for them that further simplifies for their sum, which is block diagonal in this basis. We generalize this result for the bosonized ghost sector, verify their commutation relation and relate our expressions to wedge state representations.Comment: 1+16 pages. JHEP style. Typos correcte

    Open Superstring Star as a Continuous Moyal Product

    Full text link
    By diagonalizing the three-string vertex and using a special coordinate representation the matter part of the open superstring star is identified with the continuous Moyal product of functions of anti-commuting variables. We show that in this representation the identity and sliver have simple expressions. The relation with the half-string fermionic variables in continuous basis is given.Comment: Latex, 19 pages; more comments added and notations are simplifie

    Geometric Aspects of D-branes and T-duality

    Get PDF
    We explore the differential geometry of T-duality and D-branes. Because D-branes and RR-fields are properly described via K-theory, we discuss the (differential) K-theoretic generalization of T-duality and its application to the coupling of D-branes to RR-fields. This leads to a puzzle involving the transformation of the A-roof genera in the coupling.Comment: 26 pages, JHEP format, uses dcpic.sty; v2: references added, v3: minor change

    Normalization anomalies in level truncation calculations

    Full text link
    We test oscillator level truncation regularization in string field theory by calculating descent relations among vertices, or equivalently, the overlap of wedge states. We repeat the calculation using bosonic, as well as fermionic ghosts, where in the bosonic case we do the calculation both in the discrete and in the continuous basis. We also calculate analogous expressions in field level truncation. Each calculation gives a different result. We point out to the source of these differences and in the bosonic ghost case we pinpoint the origin of the difference between the discrete and continuous basis calculations. The conclusion is that level truncation regularization cannot be trusted in calculations involving normalization of singular states, such as wedge states, rank-one squeezed state projectors and string vertices.Comment: 1+20 pages, 6 figures. v2: Ref. added, typos correcte

    On Continuous Moyal Product Structure in String Field Theory

    Get PDF
    We consider a diagonalization of Witten's star product for a ghost system of arbitrary background charge and Grassmann parity. To this end we use a bosonized formulation of such systems and a spectral analysis of Neumann matrices. We further identify a continuous Moyal product structure for a combined ghosts+matter system. The normalization of multiplication kernel is discussed.Comment: 18+7 pages, 1 figure, typos correction
    corecore