1,283 research outputs found

    Geometric Aspects of D-branes and T-duality

    Get PDF
    We explore the differential geometry of T-duality and D-branes. Because D-branes and RR-fields are properly described via K-theory, we discuss the (differential) K-theoretic generalization of T-duality and its application to the coupling of D-branes to RR-fields. This leads to a puzzle involving the transformation of the A-roof genera in the coupling.Comment: 26 pages, JHEP format, uses dcpic.sty; v2: references added, v3: minor change

    Beta decay and other processes in strong electromagnetic fields

    Full text link
    We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of non-relativistic charged particles. Using nuclear beta-decay as an example, we study the weak and strong field limits, as well as the field-induced beta-decay of nuclei stable in the absence of the external fields, both in the tunneling and multi-photon regimes. We also consider the possibility of accelerating forbidden nuclear beta-decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total beta-decay rates are unobservably small.Comment: LaTeX, 30 pages, 2 figures. Invited contribution to the special issue of Yadernaya Fizika dedicated to the centennial anniversary of birthday of A.B. Migdal. V2: references adde

    Ab initio density functional investigation of B_24 cluster: Rings, Tubes, Planes, and Cages

    Get PDF
    We investigate the equilibrium geometries and the systematics of bonding in various isomers of a 24-atom boron cluster using Born-Oppenheimer molecular dynamics within the framework of density functional theory. The isomers studied are the rings, the convex and the quasiplanar structures, the tubes and, the closed structures. A staggered double-ring is found to be the most stable structure amongst the isomers studied. Our calculations reveal that a 24-atom boron cluster does form closed 3-d structures. All isomers show staggered arrangement of nearest neighbor atoms. Such a staggering facilitates sp2sp^2 hybridization in boron cluster. A polarization of bonds between the peripheral atoms in the ring and the planar isomers is also seen. Finally, we discuss the fusion of two boron icosahedra. We find that the fusion occurs when the distance between the two icosahedra is less than a critical distance of about 6.5a.u.Comment: 8 pages, 9 figures in jpeg format Editorially approved for publication in Phys. Rev.

    Flux Stabilization in 6 Dimensions: D-terms and Loop Corrections

    Get PDF
    We analyse D-terms induced by gauge theory fluxes in the context of 6-dimensional supergravity models. On the one hand, this is arguably the simplest concrete setting in which the controversial idea of `D-term uplifts' can be investigated. On the other hand, it is a very plausible intermediate step on the way from a 10d string theory model to 4d phenomenology. Our specific results include the flux-induced one-loop correction to the scalar potential coming from charged hypermultiplets. Furthermore, we comment on the interplay of gauge theory fluxes and gaugino condensation in the present context, demonstrate explicitly how the D-term arises from the gauging of one of the compactification moduli, and briefly discuss further ingredients that may be required for the construction of a phenomenologically viable model. In particular, we show how the 6d dilaton and volume moduli can be simultaneously stabilized, in the spirit of KKLT, by the combination of an R symmetry twist, a gaugino condensate, and a flux-induced D-term.Comment: 24 pages, 1 figure v2:minor correction

    Perceived and Actual Breast Cancer Risk

    Full text link
    Perceived risk can influence health behaviors. Studies using various populations and breast cancer risk bias assessment methods have identified both risk over- and underestimation. Among 1803 women in primary care settings, 47 percent were at average epidemiologic risk (Gail-calculated relative risk ±50 percent of age-adjusted population average) and 55 percent perceived themselves to be at average risk (compared to same-age others) but there were mismatches or ‘biases’: 31 percent underestimated personal risk; 26 percent overestimated. Multiple logistic regression revealed that smokers were more likely to overestimate risk. Overestimation decreased with more education. Mammography use did not independently predict perception bias but, among never-screened women aged over 40 years, those contemplating mammograms were most likely to overestimate risk; precontemplators were most likely to underestimate. Implications for research and intervention are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66881/2/10.1177_135910539800300203.pd

    Non-standard embedding and five-branes in heterotic M-Theory

    Get PDF
    We construct vacua of M-theory on S^1/Z_2 associated with Calabi-Yau three-folds. These vacua are appropriate for compactification to N=1 supersymmetry theories in both four and five dimensions. We allow for general E_8 x E_8 gauge bundles and for the presence of five-branes. The five-branes span the four-dimensional uncompactified space and are wrapped on holomorphic curves in the Calabi-Yau space. Properties of these vacua, as well as of the resulting low-energy theories, are discussed. We find that the low-energy gauge group is enlarged by gauge fields that originate on the five-brane world-volumes. In addition, the five-branes increase the types of new E_8 x E_8 breaking patterns allowed by the non-standard embedding. Characteristic features of the low-energy theory, such as the threshold corrections to the gauge kinetic functions, are significantly modified due to the presence of the five-branes, as compared to the case of standard or non-standard embeddings without five-branes.Comment: 34 pages, Latex 2e with amsmath, typos removed, factors corrected, refs improve

    Yukawa couplings in intersecting D-brane models

    Get PDF
    We compute the Yukawa couplings among chiral fields in toroidal Type II compactifications with wrapping D6-branes intersecting at angles. Those models can yield realistic standard model spectrum living at the intersections. The Yukawa couplings depend both on the Kahler and open string moduli but not on the complex structure. They arise from worldsheet instanton corrections and are found to be given by products of complex Jacobi theta functions with characteristics. The Yukawa couplings for a particular intersecting brane configuration yielding the chiral spectrum of the MSSM are computed as an example. We also show how our methods can be extended to compute Yukawa couplings on certain classes of elliptically fibered CY manifolds which are mirror to complex cones over del Pezzo surfaces. We find that the Yukawa couplings in intersecting D6-brane models have a mathematical interpretation in the context of homological mirror symmetry. In particular, the computation of such Yukawa couplings is related to the construction of Fukaya's category in a generic symplectic manifold.Comment: 47 pages, using JHEP3.cls, 11 figures. Typos and other minor corrections. References adde
    • 

    corecore