13 research outputs found

    Measuring proper motions of isolated neutron stars with Chandra

    Get PDF
    The excellent spatial resolution of the Chandra observatory offers the unprecedented possibility to measure proper motions at X-ray wavelength with relatively high accuracy using as reference the background of extragalactic or remote galactic X-ray sources. We took advantage of this capability to constrain the proper motion of RX J0806.4-4123 and RX J0420.0-5022, two X-ray bright and radio quiet isolated neutron stars (INSs) discovered by ROSAT and lacking an optical counterpart. In this paper, we present results from a preliminary analysis from which we derive 2 sigma upper limits of 76 mas/yr and 138 mas/yr on the proper motions of RX J0806.4-4123 and RX J0420.0-5022 respectively. We use these values together with those of other ROSAT discovered INSs to constrain the origin, distance and evolutionary status of this particular group of objects. We find that the tangential velocities of radio quiet ROSAT neutron stars are probably consistent with those of 'normal' pulsars. Their distribution on the sky and, for those having accurate proper motion vectors, their possible birth places, all point to a local population, probably created in the part of the Gould Belt nearest to the earth.Comment: 8 pages, 3 figures, to appear in Astrophysics and Space Science, in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface", edited by D. Page, R. Turolla and S. Zan

    Deletion of **FMR1** in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in fragile X syndrome

    Get PDF
    SummaryAbsence of functional FMRP causes Fragile X syndrome. Abnormalities in synaptic processes in the cerebral cortex and hippocampus contribute to cognitive deficits in Fragile X patients. So far, the potential roles of cerebellar deficits have not been investigated. Here, we demonstrate that both global and Purkinje cell-specific knockouts of Fmr1 show deficits in classical delay eyeblink conditioning in that the percentage of conditioned responses as well as their peak amplitude and peak velocity are reduced. Purkinje cells of these mice show elongated spines and enhanced LTD induction at the parallel fiber synapses that innervate these spines. Moreover, Fragile X patients display the same cerebellar deficits in eyeblink conditioning as the mutant mice. These data indicate that a lack of FMRP leads to cerebellar deficits at both the cellular and behavioral levels and raise the possibility that cerebellar dysfunctions can contribute to motor learning deficits in Fragile X patients

    Defining and resolving current systems in geospace

    No full text
    Electric currents flowing through near-Earth space (R ≤12RE) can support a highly distorted magnetic field topology, changing particle drift paths and therefore having a nonlinear feedback on the currents themselves. A number of current systems exist in the magnetosphere, most commonly defined as (1) the dayside magnetopause Chapman-Ferraro currents, (2) the Birkeland field-aligned currents with highlatitude "region 1" and lower-latitude "region 2" currents connected to the partial ring current, (3) the magnetotail currents, and (4) the symmetric ring current. In the near-Earth nightside region, however, several of these current systems flow in close proximity to each other. Moreover, the existence of other temporal current systems, such as the substorm current wedge or "banana" current, has been reported. It is very difficult to identify a local measurement as belonging to a specific system. Such identification is important, however, because how the current closes and how these loops change in space and time governs the magnetic topology of the magnetosphere and therefore controls the physical processes of geospace. Furthermore, many methods exist for identifying the regions of near-Earth space carrying each type of current. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near- Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques. The influence of definitional choice on the resulting interpretation of physical processes governing geospace dynamics is presented and discussed. © Author(s) 2015

    The Magnificent Seven in the dusty prairie

    No full text
    Abstract The Magnificent Seven have all been discovered by their exceptional soft X-ray spectra and high ratios of X-ray to optical flux. They all are considered to be nearby sources. Searching for similar objects with larger distances, one expects larger interstellar absorption resulting in harder X-ray counterparts. Current interstellar absorption treatment depends on chosen abundances and scattering cross-sections of the elements as well as on the 3D distribution of the interstellar medium. After a discussion of these factors we use the comprehensive 3D measurements of the Local Bubble by Lallement et al. (2003) to construct two simple models of the 3D distribution of the hydrogen column density. We test these models by using a set of soft X-ray sources with known distances. Finally, we discuss possible applications for distance estimations and population synthesis studies. Keywords neutron stars · absorption · ISM · X-ray:general
    corecore