60 research outputs found

    Community structures of actively growing bacteria shift along a north-south transect in the western North Pacific

    Get PDF
    Bacterial community structures and their activities in the ocean are tightly coupled with organic matter fluxes and thus control ocean biogeochemical cycles. Bromodeoxyuridine (BrdU), halogenated nucleoside and thymidine analogue, has been recently used to monitor actively growing bacteria (AGB) in natural environments. We labelled DNA of proliferating cells in seawater bacterial assemblages with BrdU and determined community structures of the bacteria that were possible key species in mediating biochemical reactions in the ocean. Surface seawater samples were collected along a north-south transect in the North Pacific in October 2003 and subjected to BrdU magnetic beads immunocapture and PCR-DGGE (BUMP-DGGE) analysis. Change of BrdU-incorporated community structures reflected the change of water masses along a north-south transect from subarctic to subtropical gyres in the North Pacific. We identified 25 bands referred to AGB as BrdU-incorporated phylotypes, belonging to Alphaproteobacteria (5 bands), Betaproteobacteria (1 band), Gammaproteobacteria (4 bands), Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria (5 bands), Gram-positive bacteria (6 bands), and Cyanobacteria (4 bands). BrdU-incorporated phylotypes belonging to Vibrionales, Alteromonadales and Gram-positive bacteria appeared only at sampling stations in a subtropical gyre, while those belonging to Roseobacter-related bacteria and CFB group bacteria appeared at the stations in both subarctic and subtropical gyres. Our result revealed phylogenetic affiliation of AGB and their dynamic change along with north-south environmental gradients in open oceans. Different species of AGB utilize different amount and kinds of substrates, which can affect the change of organic matter fluxes along transect

    Linkages between bacterioplankton community composition, heterotrophic carbon cycling and environmental conditions in a highly dynamic coastal ecosystem

    Get PDF
    12 pƔginas, 4 figuras, 1 tablasWe used mesocosm experiments to study the bacterioplankton community in a highly dynamic coastal ecosystem during four contrasting periods of the seasonal cycle: winter mixing, spring phytoplankton bloom, summer stratification and autumn upwelling. A correlation approach was used in order to measure the degree of coupling between the dynamics of major bacterial groups, heterotrophic carbon cycling and environmental factors. We used catalysed reporter deposition-fluorescence in situ hybridization to follow changes in the relative abundance of the most abundant groups of bacteria (Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes). Bacterial carbon flux-related variables included bacterial standing stock, bacterial production and microbial respiration. The environmental factors included both, biotic variables such as chlorophyll-a concentration, primary production, phytoplankton extracellular release, and abiotic variables such as the concentration of dissolved inorganic and organic nutrients. Rapid shifts in the dominant bacterial groups occurred associated to environmental changes and bacterial bulk functions. An alternation between Alphaproteobacteria and Bacteroidetes was observed associated to different phytoplankton growth phases. The dominance of the group Bacteroidetes was related to high bacterial biomass and production. We found a significant, nonspurious, linkage between the relative abundances of major bacterial groups and bacterial carbon cycling. Our results suggest that bacteria belonging to these major groups could actually share a function in planktonic ecosystemsThis research was supported by the MEC contract IMPRESION (VEM2003-20021). E.T. was funded by a European Community Marie Curie Reintegration Fellowship (MERG-CT-2004-511937) and a Juan de la Cierva-MEC contractPeer reviewe

    The magnitude of spring bacterial production in the North Atlantic Ocean

    Get PDF
    Dissolved organic carbon (DOC), a major reservoir in the ocean carbon cycle, is produced by a profusion of plankton sources and processes but is consumed mainly by bacterioplankton. Thus bacterial metabolism regulates the entry of DOC into the longer scale global carbon cycle. Bacterial production (BP) is the routinely measured quantity for evaluating the roles of bacteria in carbon cycling. However BP cannot be measured directly and instead is estimated from related metabolic processes requiring the use of poorly constrained conversion factors. BP and thus the total carbon utilization, are potentially uncertain by a factor of two or more. In the North Atlantic Bloom Experiment (NABE), BP was estimated to be about 30% of the simultaneous particulate primary production (PP), with some daily estimates exceeding 50%. Here we reassess these estimates, synthesizing knowledge and understanding of plankton dynamics gained since the 1989 NABE study. Daily BP derived from six different conversion factors averaged 20% of PP but ranged from 3 to 68%. The coupling of BP to PP was not consistent with either short-term cycling of labile DOC (hours) nor with much longer term cycling of semilabile DOC (seasons). Trophodynamic processes, including release of DOC from phytoplankton, by themselves could have maintained BP at about 15% of PP. Use of decomposing POC or previously accumulated semilabile DOC could each have supported some additional increment of BP for brief periods. Both reconsideration of observations and model results indicated that higher estimates of BP exceeding 20% of PP could not be supported without extraordinary and prolonged inputs of allochthonous carbon. Recent assertions of high BP in the tropics and other oceanic regimes should be considered carefully, especially if external subsidies are not obvious

    Phospholipid turnover rates suggest that bacterial community growth rates in the open ocean are systematically underestimated

    No full text
    Heterotrophic bacteria in the surface ocean play a critical role in the global carbon cycle and the magnitude of this role depends on their growth rates. Although methods for determining bacterial community growth rates based on incorporation of radiolabeled thymidine and leucine are widely accepted, they are based on a number of assumptions and simplifications. We sought to independently assess these methods by comparing bacterial growth rates to turnover rates of bacterial membranes using previously published methods in a range of openā€ocean settings. We found that turnover rates for heterotrophic bacterial phospholipids averaged 0.80ā€‰Ā±ā€‰0.35ā€‰dāˆ’1. This was supported by independent measurements of turnover rates of a membraneā€bound pigment in photoheterotrophic bacteria, bacteriochlorophyllā€‰a (0.85ā€‰Ā±ā€‰0.09ā€‰dāˆ’1). By contrast, bacterial growth rates measured by uptake of radiolabeled thymidine and leucine were 0.12ā€‰Ā±ā€‰0.08ā€‰dāˆ’1, well within the range expected from the literature. We explored whether the discrepancies between phospholipid turnover rates and bacterial growth rate could be explained by membrane recycling/remodeling and other factors, but were left to conclude that the radiolabeled thymidine and leucine incorporation methods substantially underestimated actual bacterial growth rates. We use a simple model to show that the faster bacterial growth rates we observed can be accommodated within the constraints of the microbial carbon budget if bacteria are smaller than currently thought, grow with greater efficiency, or some combination of these two factors
    • ā€¦
    corecore