19 research outputs found
Nonlinear parametric instability in double-well lattices
A possibility of a nonlinear resonant instability of uniform oscillations in
dynamical lattices with harmonic intersite coupling and onsite nonlinearity is
predicted. Numerical simulations of a lattice with a double-well onsite
anharmonic potential confirm the existence of the nonlinear instability with an
anomalous value of the corresponding power index, 1.57, which is intermediate
between the values 1 and 2 characterizing the linear and nonlinear (quadratic)
instabilities. The anomalous power index may be a result of competition between
the resonant quadratic instability and nonresonant linear instabilities. The
observed instability triggers transition of the lattice into a chaotic
dynamical state.Comment: A latex text file and three pdf files with figures. Physical Review
E, in pres
Multipartite Entanglement and Quantum State Exchange
We investigate multipartite entanglement in relation to the theoretical
process of quantum state exchange. In particular, we consider such entanglement
for a certain pure state involving two groups of N trapped atoms. The state,
which can be produced via quantum state exchange, is analogous to the
steady-state intracavity state of the subthreshold optical nondegenerate
parametric amplifier. We show that, first, it possesses some 2N-way
entanglement. Second, we place a lower bound on the amount of such entanglement
in the state using a novel measure called the entanglement of minimum bipartite
entropy.Comment: 12 pages, 4 figure
The delta-function-kicked rotor: Momentum diffusion and the quantum-classical boundary
We investigate the quantum-classical transition in the delta-kicked rotor and
the attainment of the classical limit in terms of measurement-induced
state-localization. It is possible to study the transition by fixing the
environmentally induced disturbance at a sufficiently small value, and
examining the dynamics as the system is made more macroscopic. When the system
action is relatively small, the dynamics is quantum mechanical and when the
system action is sufficiently large there is a transition to classical
behavior. The dynamics of the rotor in the region of transition, characterized
by the late-time momentum diffusion coefficient, can be strikingly different
from both the purely quantum and classical results. Remarkably, the early time
diffusive behavior of the quantum system, even when different from its
classical counterpart, is stabilized by the continuous measurement process.
This shows that such measurements can succeed in extracting essentially quantum
effects. The transition regime studied in this paper is accessible in ongoing
experiments.Comment: 8 pages, 4 figures, revtex4 (revised version contains much more
introductory material
Recommended from our members
Isotopic distributions, element ratios, and element mass fractions from enrichment-meter-type gamma-ray measurements of MOX
The gamma-ray spectra from infinitely'' thick mixed oxide samples have been measured. The plutonium isotopics, the U/Pu ratio, the high-Z mass fractions (assuming only plutonium, uranium, and americium), and the low-Z mass fraction (assuming the matrix is only oxygen) can be determined by carefully analyzing the data. The results agree well with the chemical determination of these parameters. 8 refs., 3 figs., 3 tabs