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Multipartite entanglement and quantum state exchange

D. T. Pope1,2,* and G. J. Milburn1,†

1School of Physical Sciences and Centre for Quantum Computer Technology, University of Queensland, Brisbane 4072,
Queensland, Australia

2Centre for Quantum Dynamics, School of Science, Griffith University, Nathan 4111, Queensland, Australia
~Received 19 August 2002; published 27 May 2003!

We investigate multipartite entanglement in relation to the process of quantum state exchange. In particular,
we consider such entanglement for a certain pure state involving two groups ofN trapped atoms. The state,
which can be produced via quantum state exchange, is analogous to the steady-state intracavity state of the
subthreshold optical nondegenerate parametric amplifier. We show that, first, it possessessome2N-way en-
tanglement. Second, we place a lower bound on the amount of such entanglement in the state using a measure
called theentanglement of minimum bipartite entropy.
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I. INTRODUCTION

Multipartite entanglement is entanglement that crucia
involves three or more particles. A well-known example o
occurs in the generalized Greenberger-Horne-Zeilin
~GHZ! state uc&5u0& ^ M1u1& ^ M, where M is an integer
greater than two. Multipartite entanglement is an interest
quantum resource for a number of reasons. First, it is a
resource in quantum computation as~i! it has been proved
that it is a necessary ingredient in order for a quantum co
putation to obtain an exponential speedup over class
computation@1# and~ii ! it is central to quantum error correc
tion that uses it to encode states, to detect errors, and,
mately, to help implement fault-tolerant quantum compu
tion ~see, for example, Chap. 10 of Ref.@2#!. The second
reason why multipartite entanglement is interesting is tha
can manifest nonclassical correlations such as GHZ-type
relations@4#. Finally, it has been conjectured that multipart
entangled states contain a wealth of interesting and un
plored physics@5#.

In order to quantify the amount of multipartite entang
ment present in a state, a number of measures have
proposed. First, Vedralet al. @6# have suggested a measure
multipartite entanglement for a stater that is the minimum
relative entropy betweenr and any separable state. For sy
tems with more than two subsystems, they defined a s
rable state as one in which the state of at least one subsy
can be factored out from that of the others. In addition, Co
man, Kundu, and Wootters@7# have extended the bipartit
entanglement measure called the tangle@8# to the three-
tangle that measures three-way GHZ-type entangleme
Furthermore, Vidal @9# has studied entanglement
monotones—quantities whose magnitudes do not increa
on average, under local transformations—and has propo
that all of these can be regarded as entanglement meas
Meyer and Wallach@10# have proposed a measure of ‘‘glob
entanglement’’ forn-qubit pure states which is the sum of
number of terms involving wedge products. Each wed
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product involves computational-basis expansion coefficie
for various (n21)-qubit states obtained by deleting a qub
from the state of interest. Similarly, Wong and Anderson@11#
have extended the tangle to an arbitrary even number of
bits for pure states. Finally, Biham, Nielsen, and Osbo
@12# have proposed theGroverian entanglementfor a pure
stateuc& based on how successful Grover’s algorithm@13#
performs, given the inputuc&. The Groverian entanglemen
is equivalent to a measure in Ref.@6#; however, it shows an
interesting link between an entanglement measure and
quantum information processing capability of states. In ad
tion to the measures listed above, a number of others h
also been proposed.Quantum state exchange@14–18# is a
newly formulated process by which information is tran
ferred from an electromagnetic field to the vibrational st
of one or more trapped atom~s!. It is implemented using a
stimulated Raman process, which couples the electrom
netic field to the vibrational state and thus transfers inform
tion from the former to the latter. We explain it in more deta
in Sec. II.

In this paper, we show that quantum state exchange
be used to create an entangled state for 2N trapped atoms
that is a useful quantum resource. We begin in, Sec. II A,
explaining the process of quantum state exchange via
senting a detailed example of it within a simple system c
sisting of a harmonically trapped atom interacting with
cavity mode. Next, Sec. II B shows that quantum state
change can be used to generate an entangled pure sta
two groups ofN trapped atoms located in two spatially sep
rated far-off-resonance dipole-force traps~FORTs!. In Sec.
II C, we present a detailed summary of the remaining pa
Secs. III and IV then investigate the nature of the stat
2N-way entanglement; that is, the nature of its entanglem
that spans across all 2N atoms. In particular, in Secs. III A
and IV, we qualitatively explore this entanglement by pre
senting a necessary and sufficient condition for the prese
of M-way entanglement forM-partite pure states, and the
showing that the state satisfies it. In Sec. IV, wequantita-
tively explore the state’s 2N-way entanglement by first pre
senting a different multipartite entanglement measure
pure states in Sec. IV A. This measure is based on the
Neumann entropies@2,3# for all the reduced density opera
©2003 The American Physical Society07-1
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D. T. POPE AND G. J. MILBURN PHYSICAL REVIEW A67, 052107 ~2003!
tors obtainable from some pure state of interest by trac
over some of the subsystems for the state. After defining
measure, we then use it to calculate lower bounds on
amount of 2N-way entanglement in the state in Sec. IV
Finally, we discuss our results in Sec. V.

II. BACKGROUND THEORY

A. Quantum state exchange

Perhaps, the simplest system in which quantum state
change can occur@14# involves a two-level atom confine
within a harmonic trap which, in turn, lies inside a linear
damped optical cavity with one lossy mirror and one id
one. The atom’s vibrational motion is described by the an
hilation operatorsbx ,by , andbz . The two-level atom, which
has a transition frequency ofva , couples to both, an intrac
avity electromagnetic field mode of frequencyvc described
by the annihilation operatora and an external laser of fre
quencyvL . The cavity and external laser frequencies a
chosen so as to drive the Raman transitions that couple
jacent atomic vibrational levels. Furthermore, the cavit
axis coincides with thex axis, while the external laser bea
is perpendicular to this axis. Finally, we assume that the h
monic trap is centered on a cavity-field node and thus a s
matic diagram of this system is as in Fig. 1.

The system’s Hamiltonian is, in a reference frame rotat
at frequencyvL ,

H total
single5Hsys1k~aR†1a†R!1H res, ~1!

whereH res is the free Hamiltonian of the reservoir coupled
the cavity mode,k is a damping rate,R is a reservoir opera
tor, andHsys is the Hamiltonian for the cavity-atom syste
which is

FIG. 1. A schematic diagram of a simple system in which qu
tum state exchange can occur. A two-level atom~represented by a
black circle! lies within a harmonic trap that is itself inside a
optical cavity. The cavity, which is aligned along thex axis, sup-
ports a mode of frequencyvc and has one lossy mirror~with damp-
ing constantk) and one ideal one. An external laser beam of f
quencyvL is incident from a direction perpendicular to thex axis.
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Hsys5 (
j 5x,y,z

\n j~bj
†bj11/2!1\da†a1\Ds1s2

1\@EL~y,z,t !s11EL* ~y,z,t !s2#1\g0sin~kx!

3~a†s21as1!, ~2!

wherenx ,ny , andnz are the harmonic-oscillator frequencie
along the trap’sx, y, and z axes,s1 and s2 are atomic
raising and lowering operators for the two-level atom,d
5vc2vL , D5va2vL , EL is the complex amplitude of the
external laser field, k52p/l, where l52pc/vc , x
5A\/2mnx(bx1bx

†), wherem is the mass of the two-leve
atom, andg0 (g0PR) is the coupling constant for the atom
field interaction. Observe thatvc2vL5nx .

The following reasonable assumptions are made abou
system, so as to make calculations involving it more tr
table

~1! The cavity field and external laser frequencies are
preciably detuned fromva , and the two-level atom is ini-
tially in the ground state. Thus, the excited internal state
sparsely populated and spontaneous emission effects are
ligible and can be ignored.

~2! Vibrational decoherence occurs over a time sc
much longer than that of the interaction producing quant
state exchange, as is the case in an ion-trap realization o
system@14#. Consequently, it has a minimal effect over o
time scale of interest and is ignored.

~3! The trap dimensions are small compared to the ca
mode wavelength and thus sin(kx)!1. It follows from this
that sinkx.hx(bx1bx

†), where hx5kA\/2mnx. It also fol-
lows that we can arrange things so that they and z depen-
dences of the external laser field are negligible and th
assumingEL is time independent, thatEL(y,z,t).Ee2 ifL,
whereE is a real time-independent amplitude.

~4! The damping parameterk is such that nx@k
@g0hxE/D.

Given the assumptions above, and also assuming
g0

2/D!d andg0^a
†a&!EL , H total

single can be rewritten as@18#

H total
single5 (

j 5x,y,z
\n j~bj

†bj11/2!1\da†a2
\E 2

D

2
\g0E

D
sin~kx!~a†e2 ifL1aeifL!1k~aR†1a†R!

1H res ~3!

by adiabatically eliminating the evolution of the intern
states. Furthermore, for the system under consideratio
has been shown@14# that in the steady-state regime, the v
brational state of the atom in thex direction is solely deter-
mined by the input field~i.e., the light field entering the
cavity!, such that

b̃x~v!5
A2G

iv2G
ãin~v!, ~4!

-

-
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MULTIPARTITE ENTANGLEMENT AND QUANTUM STATE . . . PHYSICAL REVIEW A 67, 052107 ~2003!
where b̃(v)5(1/A2p)* t52`
` dtbx(t)e

i (nx2v)t, G5g0
2hx

2E 2/

(D2k), and ãin(v)5(1/A2p)* t52`
` dte2 ivtãin(t), where

ãin(t)5(1/A2p)*v852`
` dv8ei (nx2v8)tc0(v8), where

c0(v8) is the value of the reservoir annihilation operator f
the frequencyv8 at time t50. The proportionality between

b̃x(v) andãin(v) present in Eq.~4! denotes that the ‘‘statis
tics of the input field@have been# . . . ‘‘written onto’’ the
state of the oscillator’’@14# ~i.e., onto the atom’s vibrationa
state in thex direction!. We thus say that quantum state e
change has taken place when this equation holds.

B. System of interest

In this paper, we use quantum state exchange to gene
a particular state involving two groups ofN trapped atoms
which, we later show, contains multipartite entanglement t
is a useful quantum resource. Our work follows on from R
@15# in which it wasassertedthat for a certain system con
sisting of two groups ofN trapped atoms, quantum sta
exchange could generate ‘‘a highly entangled state of
2@N# atoms.’’ The system we consider can be seen as a
crete example of that described in the last paragraph of
@15#—our main original contributions are, first,demonstrat-
ing that the state within our system is a multipartite e
tangled one and, second, quantitatively analyzing the m
partite entanglement within it.

The system we consider comprises, first, a subthres
nondegenerate optical parametric amplifier~NOPA! @19–21#
for which the two external output fields first pass throu
Faraday isolators and then each feed into a different line
damped optical cavity for which one mirror is perfect and t
other one is lossy. The axes of both cavities coincide with
x axis. Each cavity supports an electromagnetic field mod
frequencyv jc that is described by the annihilation operat
aj , wherej enumerates the cavities. Within thej th cavity, lie
N identical two-level atoms, each possessing an internal t
sition frequency ofva . These are trapped in a linear co
figuration parallel to thex axis by, first, a one-dimensiona
FORT@22,23#. This consists of cavity mode of frequencyvT
which exhibits a standing-wave pattern along thex axis. The
frequencyvT is strongly detuned from all atomic resona
frequencies and thus the cavity mode’s field exerts dip
forces on the atoms, trapping each of them near a sepa
node of the field. In addition, the FORT’s axis is parallel
the x axis and it thus traps the atoms in thex direction. The
atoms are also tightly confined in they andz directions by a
two-dimensional far-off resonance optical lattice@24–26#
and thus move negligibly in these directions. The combin
effect of all the trapping fields is to confine each atom in
own one-dimensional trap parallel to thex axis. Furthermore,
the atoms are located such that the mean position of e
atom coincides with a node of the cavity field described
aj . The annihilation operatorbjx

(m) describes the vibrationa
motion of themth atom in the j th trap in thex direction.
Finally, external lasers of frequencyvL whose beams are
perpendicular to thex axis are incident on all atoms; Fig.
illustrates the system under consideration.
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The Hamiltonian for thej th

H j total5H j 0
atom1H j 01H jI 1k~ajRj

†1aj
†Rj !1H j res, ~5!

whereH j 0
atom is the free Hamiltonian for the vibrational state

of the atoms, andH j 0 is the free Hamiltonian for the cavity
field and the atoms’ internal states. The termH jI is the inter-
action Hamiltonian describing the Raman processes inv
ing the cavity field, the external lasers, and the atoms. To
more specific,H j 0

atom5\n jx(m51
N (bjx

(m) †bjx
(m)1 1

2 ), wheren jx

is the vibrational frequency of the FORT in thej th cavity
~which we call thej th FORT! in the x direction. This fre-
quency is equal tov jc2vL . The HamiltonianH j 0 is, in a
frame rotating at frequencyvL ,

H j 05\daj
†aj1\D (

m51

N

s j 1
(m)s j 2

(m) , ~6!

where d j5v jc2vL , D5va2vL , and s j 1
(m) and s j 2

(m) are
raising and lowering operators for the internal states of
mth atom in thej th trap. The termH jI is

H jI 5\ (
m51

N

EL~y,z,t !s j 1
(m)1EL* ~y,z,t !s j 2

(m)

1\g0 (
m51

N

sin~kjxjm!~aj
†s j 2

(m)1ajs j 1
(m)!, ~7!

FIG. 2. A schematic diagram for a system involving, first,
subthreshold optical nondegenerate parametric amplifier~NOPA!
whose output modes pass through Faraday isolators~represented by
F enclosed in a circle! and then feed into linearly damped optic
cavities~as indicated by the sinusoidal curves inside both cavi
which represent the cavity modesa1 and a2). These cavities are
aligned along thex axis and both have one ideal mirror and o
lossy one~with damping constantk). Inside each of them is a
far-off-resonance dipole-force trap~FORT! that, along with a two-
dimensional far-off resonance optical lattice, confinesN identical
two-level atoms in a linear chain parallel to thex axis. Observe that
the FORTs’ trapping modes are not shown in the diagram. Exte
lasers of frequencyvL are incident on each atom in both traps fro
a direction perpendicular to thex axis.
7-3
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where EL is the complex amplitude for all external laser
kj5v jc /c, andg0 (g0PR) is the coupling constant for th
atom-field interaction. Finally,H j res is the Hamiltonian for
the external reservoir that couples to thej th cavity for which
Rj is a reservoir annihilation operator andk is a damping
constant.

The following feasible assumptions are made about
system in order to simplify calculations for it and to focus
its most important aspects

~1! The cavity field and external laser frequencies are
preciably detuned fromva , and all two-level ions are ini-
tially in the ground state. Thus, the excited internal states
sparsely populated, and spontaneous emission effects
negligible and can be ignored.

~2! Vibrational decoherence occurs over a time sc
much longer than that of the interactions producing quan
state exchange and consequently can be ignored.

~3! The wavelength of the cavity mode described byaj is
much greater than the distance that any atom in thej th trap
strays from the cavity-field node about which it is trappe
Thus, sin(kxjm).kxjm!1 and hence all atoms experience
potential that is, to a good approximation, harmonic. T
justifies the form ofH j 0

atom.
~4! All atoms are tightly confined in they andz directions.

This allows us to ignore they and z dependences of th
external laser fields and thus, assumingEL is time indepen-
dent, it follows thatEL(y,z,t).Ee2 ifL, whereE is a real
time-independent amplitude.

~5! The damping parameterk is such that n jx@k
@g0h jxANE/D, where h jx5kjA\/2mn jx, where m is the
mass of each atom.

Given the assumptions above, we can writeH j total in
terms of normal-mode creation and annihilation operat
~by adiabatically eliminating the evolution of the intern
states! as

H j total5\ (
m51

N

n jxS Bjx
†(m)Bjx

(m)1
1

2D1\da†a2
\NE 2

D

2
\g0h jxANE

D S (
m51

N

~Bjx
(m)1Bjx

(m)†!~aj
†e2 ifL

1aje
ifL!D 1k~ajRj

†1aj
†Rj !1H j res, ~8!

whereBjx
(m) is the annihilation operator for themth normal

mode for thej th trap in thex direction. For example,Bjx
(1) is

a center-of-mass mode annihilation operator, which isBjx
(1)

51/AN(bjx
(1)1bjx

(2)1 . . . bjx
(N)) while Bjx

(2) is the annihilation
operator for thebreathing mode, which is Bjx

(2)51/A2
(2bjx

(1)1bjx
(2)) whenN52.

Comparing Eq.~8! to Eq. ~3!, we see thatBjx
(1) in Eq. ~8!

plays an almost identical role to that ofbx in Eq. ~3!. Given
that sin(kx).hx(bx1bx

†) in Eq. ~3!, the only difference be-
tween the forms in which the two operators appear res
from a factor ofAN appearing in front ofE in Eq. ~8!. As a
consequence,Bjx

(1) in Eqn ~8! couples to the cavity modeaj
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identically—aside from the factor ofAN—to the manner in
which bx couples toa. It follows that as quantum state ex
change takes place in the system described byH total

single with
information about an input electromagnetic field being tra
ferred tobx , it also occurs in the system described byH j total
due to the correspondence between the two system’s Ha
tonians. Thus, in the latter system, information about
input field is transferred to the center-of-mass mode for
trapped atoms in thex direction just as if this mode was a
vibrational mode for a single harmonically trapped atom.
The only difference between theN-atom case and one de
scribed byH total

single is that the effective coupling in the forme
case is increased by a factor ofAN. This conclusion can also
be verified via comparing the Langevin equations forBjx

(m)

and bx . Due to symmetry considerations, collective mod
other than the center-of-mass modes do not absorb any
tons in modesa1 and a2. Thus, assuming that these oth
modes are initially in vacuum states, they remain so dur
quantum state exchange.

In Ref. @15#, it was shown that we can transfer the intr
cavity steady state for the subthreshold nondegenerate p
metric amplifier which is

uc&5
1

coshr (
n50

`

tanhnr un&1un&2 , ~9!

where the subscripts 1 and 2 denote the two output mo
andr is a real squeezing parameter, into the vibrational sta
in the x direction for two single trapped atoms in differe
harmonic traps. Using the correspondence between the q
tum state exchange processes involving a single harm
cally trapped atom andN harmonically trapped atoms dem
onstrated above, it follows that in the system illustrated
Fig. 2 we can transferuc& into the center-of-mass modes
the x direction for the two sets ofN trapped atoms, thus
producing in the steady state,

ucC.M.&5
1

coshr (N50

`

tanhNr uN&1uN&2 , ~10!

where uN& j denotes thecenter-of-massvibrational number
state for thex direction with eigenvalueN for the atoms in
the j th FORT. In writing this state, we have omitted th
states of collective modes other than the center-of-m
modes as we have assumed these other modes are in va
states throughout the quantum state exchange process.

Importantly, the process of creatingucC.M.& just outlined
does not seem to be overly experimentally infeasible. Thi
so as optical cavities and nondegenerate, optical param
amplifiers have been widely realized quantum optical la
ratories for some time. In addition, neutral atoms have b
confined within standing-wave dipole-force traps that,
turn, lie within optical cavities@27#. Relatedly, experiments
in which a single harmonically trapped ion has been pla
within an optical cavity have been conducted@28#.
7-4
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C. Summary

In this paper, we explore multipartite entanglement in
lation to quantum state exchange and in Sec. III, follow
from a multipartite entanglement condition implicit in wor
by Dür and Cirac@29# by presenting a different condition
The satisfaction of this different condition implies that a
pure state comprising ofM subsystems isM-way entangled.
Here, anM-way entangled state is one possessing entan
ment that spans acrossM subsystems as does the generaliz
GHZ stateuc&5u0& ^ M1u1& ^ M. After presenting this condi-
tion, we then use it to showqualitatively that ucC.M.& is
2N-way entangled. In Sec. IV, wequantitativelyconsider the
entanglement inucC.M.&. We introduce a multipartite en
tanglement measure for pure states we call theentanglement
of minimum bipartite entropyor EMBE which is the minimum
of the von Neumann entropies of all the reduced den
operators obtainable from some pure states of interes
tracing over some of the subsystems for the state. After t
we useEMBE to calculate alower boundfor the amount of
four-way, six-way, and eight-way entanglements inucC.M.&
for N52,3,4, respectively, for a range ofr values. Finally,
we discuss the nature of our results.

It is interesting to investigate the nature ofucC.M.& ’s
2N-way entanglement for a number of reasons. First, it
been claimed—but not demonstrated—thatucC.M.& is ‘‘en-
tangled state of all 2@N#••• atoms’’ @14#. It is thus interest-
ing to investigateucC.M.& ’s 2N-way entanglement in order t
see if this implied claim is true. Second, it is interesting
investigateucC.M.& ’s 2N-way entanglement as it is amassive-
particle state that is important as, to date, mostlymassless
photons have been used to experimentally investigate
tanglement. Third, if the claim is true, then it means th
ucC.M.& is a state consisting of 2N entangled harmonic oscil
lators, each possessing aninfinite-dimensionalHilbert space
as opposed to the two-dimensional Hilbert space of a q
that is 2N-way entangled.

III. QUALITATIVE RESULTS

A. Negative partial transpose sufficient condition

Assume that for a certain stater, we wish to know the
answer to the question ‘‘Doesr contain at least someM-way
entanglement?’’ While answering this question does not
us everything about the nature ofr ’s M-way entanglement, it
nevertheless tells us something of interest. One way to
swer it, provided thatr consists of qubits, is to use a cond
tion that can be readily derived from work of Du¨r and Cirac
@29#. This condition involves negative partial transpos
~NPTs! @30–32# and thus we name it the NPTsufficient con-
dition. It is sufficient for the presence ofM-way entangle-
ment for allr ’s consisting ofP qubits, whereP>M , and is
based on generalizing the notions of separability and inse
rability to many-qubit systems. Before stating the conditio
it is useful to mention two things. First, we define a
M-partite splitof r @29#, to be a division or split ofr into M
parts, where each consists of one or more subsystems.
ond, we observe thatr can always be converted to a sta
that is diagonal in a certain basis by a ‘‘depolarization’’ pr
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cess consisting of particular local operations@29#. This basis
consists ofM-qubit generalized GHZ states of the formuc&
51/A2(u j &u0&6u2N212 j 21&u1&), where j is a natural
number that we write in binary asM21 bits, i.e. j
[ j 1 j 2 , . . . ,j M21, where j x is thexth bit in j ’s binary rep-
resentation. Given these two things, the NPT sufficient c
dition states thatr is M-way entangled for a givenM-partite
split if the diagonal state that it depolarizes to is such that
bipartite splitsthat contain the M-partite split have negative
partial transposes. Abipartite split is one that divides a sys
tem into two parts, i.e., a two-partite split. Furthermore
bipartite split thatcontainsan M-partite split is the one tha
does not separate members of any of theM subsystems onto
two different sides of the bipartite split; that is, one that do
not cross any of the divisions created by theM-partite split.

B. Result

Following on from the NPT sufficient condition, we pro
pose a necessary and sufficient condition for the existenc
M-way entanglement forM-partite pure states. Our conditio
is based on the traces of the squares of reduced density
trices obtained by tracing over some of the subsystems c
stituting our system of interest. After formulating it, we use
to demonstrate thatucC.M.& containssome2N-way entangle-
ments. Our motivations for employing our condition, inste
of the NPT sufficient condition, are that~i! it seems to be
mathematically simpler to calculate whether or not our co
dition is satisfied and~ii ! as we are concerned with a pu
state, our condition is stronger than the NPT sufficient c
dition in the sense that it is both necessary and sufficien
opposed to just being sufficient.

Our M-way entanglement condition utilizes the fact th
when apurestateuc& for M subsystems isM-way entangled.
we cannot write it as uc&5uf1&Qj

^ uf2&Q̄j
, where uf1&Qj

and uf2&Q̄j
are the states for the subsystems denoted byQj

andQ̄j , respectively, and bothQj andQ̄j denote at least one
subsystem. To put this in another way, whenuc& is M-way
entangled, there isno way to represent it as the tensor pro
uct of two pure states. Consequently, excluding all such p
sibilities suffices to show, and is also, in general, necess
to show, thatuc& is M-way entangled. This can be done b
first checking that no single-subsystem state can be fact
out from the state of the remainingM21 subsystems. We do
this by checking that the traces of the squares of all
reduced density operators obtainable fromuc& by tracing
over one subsystem are less than one; that is, Tr(@rQj

#2)

,1, whererQj
is the reduced density operator obtained fro

uc&^cu by tracing over the subsystem denoted byQj , for all
Qj denoting just one subsystem. We can then repeat
procedure, considering allQj ’s corresponding to all pairs o
subsystems, then all triples, and so forth until we have c
sidered allQj ’s corresponding to all sets ofR subsystems,
whereR5 bM /2c, wherebxc is the largest integer less than o
equal tox. It is sufficient to only consider sets of up to thos
corresponding tobM /2c subsystems as a necessary condit
for being able to factor out any larger number of subsyste
from uc& is the ability to also factor outbM /2c or fewer
7-5
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subsystems. Underlying the process just described is tha
seeing whether or not we can exclude all the ways thatuc&
could fail to beM-way entangled.

Our condition can be formalized as Definition 1 that is
follows.

Definition 1. For a pure stateuc& for M subsystems, con
sider the setQ whose membersQj are themselves sets o
subsystems for the system corresponding touc&. This setQ
contains all sets ofP subsystems for this system, where
<P< bM /2c. Given this,uc& is M-way entangled if and only
if, for all Qj , Tr(@rQj

#2),1, whererQj
is the reduced den

sity operator obtained by beginning withuc&^cu and tracing
over the subsystemsQj .

To illustrate Definition 1, consider, for example, the GH
state uc&GHZ51/A2(u000&1231u111&123), where the sub-
scripts 1, 2, and 3 denote subsystems ofuc&GHZ. The param-
eter P5 b3/2c51 and consequently the setQ comprises all
sets of one subsystem and thusQ5ˆ$1%,$2%,$3%‰, where the
numbers again denote subsystems foruc&GHZ. For the ele-
ment $1%, for example, Tr(@r$1%#2)51/2. Calculating
Tr(@rQj

#2) for all of Q’s other elements, we find that it is 1/

in all the three cases. Thus,uc&GHZ satisfies Definition 1 and
hence is said to be 3-way entangled, as is the case.

To further explain Definition 1, we now apply it to dete
mining whether the following four-party states are four-w
entangled: ~1! uc4

(1)&51/A2(u0000&12341u1111&1234), ~2!
uc4

(2)&51/A2u0&1^ (u000&2341u111&234), ~3! uc4
(3)&5uf1&12

^ uf1&34.
Turning to ~1!, we see that upon tracing over any sing

subsystem, we produce a reduced density operator of
form rQj

51/2(u000&^000u1u111&^111u) for which

Tr(@rQj
#2)51/2. Similarly, tracing over any two subsystem

produces a density operator of the formrQj
51/2(u00&^00u

1u11&^11u) for which, again, Tr(@rQj
#2)51/2. Thus, Defi-

nition 1 gives the correct result thatuc4
(1)& is four-way en-

tangled. For~2!, tracing over the first subsystem produc
uc4

(3)&51/A2(u000&2341u111&234), which is a pure state an
hence Tr(@rQj

#2)51 for the correspondingj. Consequently,

Definition 1 tells us thatuc4
(2)& is not four-way entangled, as

is the case. For~3!, tracing over any one subsystem produc
the mixed stater5I /2^ uf1&34̂ f1u and so we might
be tempted to infer thatuc4

(3)& is four-way entangled.
However, when we trace over subsystems 1 and 2 or s
systems 3 and 4, we produce the pure stateuf1& for which
Tr(@ uf1&^f1u#2)51. Hence, Definition 1 correctly tells u
that uc4

(3)& is not four-way entangled.
In applying Definition 1 toucC.M.&, we first writeucC.M.&

in terms of vibrational number states for the 2N atoms in-
volved as we wish to see if they are 2N-way entangled. As a
step towards doing so, upon observing thatuN& j

5((Bjx
(1)†)N/AN!) u0& j , we expressuN& j in terms of vibra-

tional number states in thex direction forindividual atoms as

uN& j5 (
ac(nW ,N)

c~nW ,N!unW & j , ~11!
05210
of

s

he

s

b-

where nW is the N-component vector (n1 ,n2 , . . . ,nN), the
state unW & j5un1& j ^ un2& j•••unN& j , where unk& j denotes a
number state for thekth atom in thej th FORT, and

c~nW ,N!5 j^nW uN& j5

S N
n1

D S N2n1

n2
D •••S N2n1•••2nN22

nN21
D

AN! 3NN

3An1!n2! •••nN! . ~12!

The sum(ac(nW ,N) denotes the sum overall combinationsof
n1 ,n2 , . . . ,nN such that( j 51

N nj5N @33#. Using Eq.~11! to
representucC.M.& in terms of vibrational number states fo
individual atoms, we obtain

ucC.M.&5
1

coshr (N50

`

tanhNr S (
ac(nW ,N)

c~nW ,N!unW &1D
^ S (

ac(mW ,N)

c~mW ,N!umW &2D . ~13!

We now show that the right-hand side of Eq.~13! satisfies
Definition 1 and thusucC.M.& is 2N-way entangled. We do
this by first writingucC.M.& as the most general bipartite sta
possible involving vibrational number states for individu
atoms. Next, we show that, upon tracing over the atoms
the half of the bipartite split containing the lesser number
atoms and then finding the trace of the square of the resu
reduced density operator, this is less than one. It follows t
for all j, Tr(@rQj

#2),1. Hence, we satisfy Definition 1 an

so ucC.M.& is 2N-way entangled.
Dividing the atoms inucC.M.& into two subsystemsA and

B containing, respectively,R and 2N2R atoms (RÞ0), we
can writeucC.M.& as

ucC.M.&5(
i 50

`

ci u f i&A^ ugi&B , ~14!

whereiu f i&Ai5iugi&Bi51 and theu f i&A , but not necessarily
the ugi&B , are mutually orthogonal.~As we can always write
ucC.M.& in biorthogonal form@34#, there existugi&B that are
mutually orthogonal. However, we are not concerned w
this form in the current calculation and so do not consid
such a decomposition ofucC.M.&.! To give an example, when
N52 andA contains the first atom in the first trap

ucC.M.&5
1

coshr
u0&A^ S u000&B1

tanhr

2
u101&B

1
tanhr

2
u110&B1

tanh2r

4
u202&B1

A2tanh2r

4
u211&B

1
tanh2r

4
u220&B1••• D 1

1

coshr
u1&A

^ S tanhr

2
u001&B1

tanhr

2
u010&B1

tanh2r

A8
u102&B
7-6
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1
A2tanh2r

2
u111&B1

tanh2r

2
u120&B1••• D

1
1

coshr
u2&A^ S tanh2r

4
u002&B1

A2tanh2r

8
u011&B

1
tanh2r

4
u020&B1••• D 1•••, ~15!

where ux&A5un15x&A and ux1x2x3&B5un25x1 ,m15x2 ,m2
5x3&B . Here, for example,c051/coshr, u f 0&A5u0&A , c1
51/coshr, u f 1&A5u1&A ,

ug0&B5
1

AM0
S u000&B1

tanhr

2
u101&B1

tanhr

2
u110&Bu&

1
tanh2r

4
u202&B1

A2tanh2r

4
u211&B1

tanh2r

4
u220&B

1••• D
and

ug1&B5
1

AM1
S tanhr

2
u001&B1

tanhr

2
u010&B1

tanh2r

A8
u102&B

1
A2tanh2r

2
u111&B1

tanh2r

2
u120&B1••• D ,

whereM0 andM1 normalizeug0&B and ug1&B . Upon trac-
ing over A in Eq. ~14! and squaring the resulting reduce
density operatorrQA

, we obtain

@rQA
#25 (

i , j 50

`,`

ci
2cj

2ugi&^gi ugj&^gj u. ~16!

Calculating the trace of@rQA
#2 yields

Tr~@rQA
#2!5 (

i , j 50

`,`

ci
2cj

2udi j u2, ~17!

wheredi j 5^gi ugj&. As the trace of a density operator is a
ways one, we know that

(
i , j 50

`,`

ci
2cj

25S (
i 50

`

ci
2D S (

j 50

`

cj
2D 51. ~18!

It thus follows from Eq.~17! that, asciÞ0 for all i, if
udi j u2,1 for at least onedi j then Tr(@rQA

#2t),1.

As the center-of-mass stateuN&1uN&2 has an even numbe
of center-of-mass phonons in total (2N), when we express i
as a sum of vibrational number states for individual atom
these states all contain an even number of individ
phonons in total. Furthermore, becauseucC.M.& contains the
stateuN50&1uN50&2 , u f i&A in Eq. ~14! for one particular
value ofi, which we denote byu f i

zero&A , is a tensor product o
05210
,
l

ground states for some of the 2N atoms inucC.M.&. For ex-
ample, in Eq.~15!, u f i

zero&A5u0&A . Given that, in general,
u f i

zero&A contains zero individual phonons, only states with
evennumber of individual phonons in total are present in t
ugi&B with the same indexi, which we denote byugi

zero&B .
This is so as we require the total number of individu
phonons inu f i

zero&A^ ugi
zero&B to be even.

In addition tou f i
zero&A , becauseucC.M.& includes the term

uN51&1uN51&2, there also exists anu f i&A in Eq. ~13! con-
taining just one individual phonon, which we denote
u f 1

one&A . For example, in Eq.~15! u f 1
one&A5u1&A . In general,

the ugi&B with the same indexi as u f i
one&A , which we denote

by ugi
one&B , comprises states with anodd number of indi-

vidual phonons in total as dictated by the requirement t
the total number of individual phonons foru f i

one&A^ ugi
one&B is

even. Thus,ugi
one&B is orthogonal tougi

zero&B and the corre-
spondingudi j u25u^gi

zerougi
one&u250. Returning to the right-

hand side of Eq.~17!, this means that Tr(@rQA
#2),1 for QA

and thus Definition 1 is satisfied. This allows us to infer th
ucC.M.& is 2N-way entangled and consequently we have ve
fied the assertion thatucC.M.& is an ‘‘entangled state of al
2@N#••• atoms’’—except, of course, whenr 50.

IV. QUANTIFYING THE AMOUNT OF 2 N-WAY
ENTANGLEMENT IN zcC.M.‹

A. Theory

In the preceding section, we presented a qualitative re
that showed thatucC.M.& possessed some 2N-way entangle-
ment. However, we would also like to know how muc
2N-way entanglementucC.M.& contains. For this reason, w
presentquantitative measure ofM-way entanglement for
M-partite pure states, for an arbitraryM. This measure is
based on the von Neumann entropies of reduced density
erators produced by considering all bipartite splits for so
state of interest. We call it theentanglement of minimum
bipartite entropyor EMBE , which we soon define. After this
we then argue that it is a plausible measure and finally, us
to calculate alower boundon the amount of 2N-way en-
tanglement inucC.M.&.

For a pure stateuc& with M subsystems,EMBE is

EMBE~ uc&)5min~Sall!, ~19!

whereSall is the set containing the von Neumann entropies
all the reduced density operators obtained fromuc&^cu by
tracing over a set ofP subsystems inuc&, where 1<P
< bM /2c. The function min(X) returns the smallest elemen
of the setX. Thus, as the von Neumann entropies of bo
sides of any bipartite split ofuc& are equal@2#, Sall contains
the von Neumann entropies forall the reduced states that w
can generate fromuc&. For example, whenuc&5uc&GHZ

51/A2(u000&1231u111&123), the sets of subsystems contai
ing P members that we trace over in obtainingSall are $1%,
$2%, and$3%, where the numbers denote either the ‘‘1,’’ ‘‘2,
or ‘‘3’’ subsystems ofuc&GHZ. As the von Neumann entrop
of the stater is S(r)52Tr(r log2r) @2,3#, the von Neumann
7-7
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entropy for the reduced density operator generated f
uc&GHZ^cu upon tracing over the subsystem denoted by a
one of these sets is 1. HenceSall5$1,1,1% and so
EMBE(uc&GHZ)51. Thus, we say thatuc&GHZ has one unit of
three-way entanglement.

To provide some insight intoEMBE , it is now shown that
it can be thought of as adistance-basedmeasure ofM-way
entanglement; that is, as measuring the distance betweenuc&
and the closest pure state with zeroM-way entanglemen
given a certain metric. To understand this, observe that,
ively, it seems reasonable to think that there exists a p
stateuczero& with zeroM-way entanglement that has an ide
tical Sall to uc& ’s except for one element. This element co
responds to the smallest element ofSall(uc&) and is zero. The
next step in comprehending the distance-based natur
EMBE is representingSall(uc&) and Sall(uczero&) by pointsA
and B, respectively, in a coordinate space for which ea
coordinate denotes the possible values of an element o
therSall(uc&) or Sall(uczero&); that is, a space that graphical
representsSall(uc&) and Sall(uczero&). For such a space, w
observe that no pure state with zeroM-way entanglement is
represented by a point closer toA thanB. It is in this sense
that we think ofuczero& as being the closest pure state touc&
with zero M-way entanglement. Finally, the distance-bas
nature ofEMBE(uc&) can be seen by observing that the d
tance betweenA andB is EMBE(uc&). This point is illustrated
in Fig. 3 for the three-way entangled stateuf& comprising
three subsystems for whichSall(uf&)5$S1 ,S2 ,S3%, where
S1,S2 ,S3 andS1 ,S2 ,S3Þ0. Naively, the closest pure sta
to uf& with no three-way entanglementufzero& seems to be
such that Sall(ufzero&)5$0,S2 ,S3%. RepresentingSall(uf&)
and Sall(ufzero&) graphically in the manner described abo
by points A and B in Fig. 3, we observe that the distanc
between these isS15EMBE . Generalizing this notion, we se
that EMBE can be viewed as measuring the distance betw
uc& and the nearest pure state with zeroM-way entangle-
ment. This distance seems to be a plausible measure ofuc& ’s
M-way entanglement and thusEMBE appears to have an un
derlying intuitive motivation.

FIG. 3. Coordinate space illustrating thatEMBE can be seen as
distance-based entanglement measure. The distance betweenA @the
point representingSall(uf&)5$S1 ,S2 ,S3%, whereuf& is three-way
entangled and S1,S2 ,S3] and B @the point representing
Sall(ufzero&)5$0,S2 ,S3%, where ufzero& appears to be the close
pure state with no three-way entanglement touf&] is EMBE . The
quantitiesS1 , S2, andS3 are dimensionless.
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To further highlight the plausibility ofEMBE , consider the
following analogy. Imagine an ordinary chain withM links.
If M21 of these are strong and the other one is weak, t
the chain is close to breaking and so only has a small amo
of ‘‘nonbrokenness’’—even though all but one of the link
are solid. This is so as nonbrokenness is a wholistic prop
that is a manifestation of the nature of allM links. Relating
this to EMBE , just as nonbrokenness is a wholistic proper
so EMBE measures a wholistic property, namely,M-way en-
tanglement, that relates to the nature of allM subsystems of
M-partite states. In analogy with a chain with just one we
link, anM-partite pure state for which all members ofSall are
large, except for one, is very close to possessing noM-way
entanglement. In this way, we see thatEMBE and, in particu-
lar, the presence of the min function in it seems plausible

Another interesting feature ofEMBE is that it satisfies
three well-known desiderata forbipartite entanglement mea
sures@35#, as we now show.~It seems plausible that thes
should also be desiderata formultipartiteentanglement mea
sures.! They are the following:

~1! the proposed entanglement measure is zero for
product states;

~2! the proposed entanglement measure is invariant un
local unitaries;

~3! the proposed entanglement measure does not incre
on average, under local operations, classical communica
~LOCC! and division into subensembles.

Beginning with ~1!, if the state of interest is a produc
state, where we define a product state to be one for which
can factor out the state of at least one of the subsystems,
at least one member ofSall is zero and soEMBE is also zero,
as we desire. Turning to~2!, we note that for a general bi
partite split, the von Neumann entropy of the reduced den
matrix obtained by tracing over the subsystems on the sid
the split with the lesser number of particles is invariant un
unitary transformations that act on only one subsystem. C
sequently, if we define local unitaries to be those which
just on a single subsystem, thenEMBE satisfies~2!.

In considering~3!, it is important to remember thatEMBE
is only for pure states and thus we ignore local operati
that convertuc& to a mixed state. For example, we do n
consider local operations that transformuc& to a state that is
close to a maximally mixed state and thus has large va
for the von Neumann entropies of all its reduced states.
choose this example as such local operations increase
value of min(Sall) for a system of interest. However, the
manifestly do not increase itsM-way entanglement, but in
stead transform its state into one for whichEMBE is not ap-
plicable. With this constraint in mind, we define a local o
eration to be one that involves just one subsystem such
projective measurement on a single subsystem. Given
definition, it can be shown that forbipartite pure states
LOCC and division into subensembles cannot increase
average entanglement of any state as measured by the
Neumann entropy of its reduced states~entropy of entangle-
ment! @25#. It follows that they also cannot increase an
member ofSall(uc&), on average, as these faithfully measu
the bipartite entanglement inuc& given some bipartite split
7-8
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for it. Thus, EMBE also cannot increase, on average, un
LOCC and division into subensembles and soEMBE satisfies
~3!.

Another well-known desideratum for a bipartite entang
ment measure is that it isadditive over tensor products@35#.
However, it can be shown thatEMBE is superadditive; that is,
theM-way entanglement of a combined state generated f
two states witha andb units ofM-way entanglement can b
greater thana1b ~but, importantly, not whenM52). It is
an open question as to whether or not multipartite entan
ment is additive and so we do not know if the superadditiv
of EMBE represents a flaw.

For EMBE to be a reasonable measure, it ought to red
to the standard pure state bipartite entanglement measu
the entropy of entanglement. ForEMBE , when N51,
we have EMBE5min(Sall)5S$1% , where S$1% is the von
Neumann entropy for the reduced density operatorrQ$1%

5Tr1(uc&^cu), and so we recover the desired measu
namely, the entropy of entanglement. Finally,EMBE seems to
be plausible as foruc&5Acu0& ^ N1A12cu1& ^ N, where c
P@0,1# and N is a positive integer,EMBE52c log2c2(1
2c)log2(12c). This expression increases monotonically
the intervalcP@0,1/2# and attains its maximum value of on
for c51/2. Such behavior seems reasonable.

B. Results

In this section, we useEMBE to calculatelower boundson
the amount of 2N-way entanglement present inucC.M.& for
N52,3,4, for a range ofr values. We obtain these lowe
bounds by, first, calculating Tr(@rQj

#2) for a generalQj .

Next, we determine thelinear entropy SL(rQj
) @36# from the

relation SL(rQj
)512Tr(@rQj

#2) and then use the fact tha

SL(r)/ log2e<S(r) to obtain our lower bounds. We calcula
a lower bound rather thanEMBE itself as it is computationally
infeasible to calculateEMBE due to the fact that it is compu
tationally infeasible to calculate the required von Neuma
entropies of reduced density operators given the infin
dimensional bases of the harmonic oscillators compris
ucC.M.&. This is so as these are generally calculated by fi
diagonalizingr, and it is computationally infeasible to d
this, in general, whenr is a square matrix of infinite dimen
sions.

We begin with the initial density operatorrC.M.
5ucC.M.&^cC.M.u that can be written in the center-of-ma
number-state basis as

rC.M.5 (
N,N8

`,`

f ~N,N8!uN&1uN&2 2^N8u1^N8u, ~20!

where f (N,N8)5tanhN1N8r /cosh2r. To obtain a genera
rQj

, we trace over the firstT atoms in the first FORT and th
first V in the second one, arriving at

rQj
5 (

PW 50W

Ẁ

(
N,N8

`,`

f ~N,N8!^PW uN&1uN&2 2^N8u1^N8uPW &,

~21!
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where PW is a dummy variable given by PW

5(p1
(1) ,p2

(1) , . . . ,pT
(1) ,p1

(2) . . . . ,pV
(2)). Here pa

( j ) denotes a
vibrational number state for theath atom in thex direction in
the j th FORT, 0W 5(0(1),0(2),0(3) , . . . ,0(T1V)), and Ẁ
5(` (1) ,` (2) ,` (3) , . . . ,̀ (T1V)), where a bracketed sub
script enumerates the elements of 0W or Ẁ . We adopt a nota-

tion such that a sum of the form(XW 50W
YW , whereXW andYW are

the F-component vectors (X1 ,X2 , . . . ,XF) and
(Y1 ,Y2 , . . . ,YF), respectively, denotes the set of sum
(X150

Y1 (X250
Y2 (X350

Y3
•••(XF50

YF . Furthermore, we also assum

that a state of the formuXW & denotes the stateuX1&
^ uX2& . . . uXF&. Note that due to an exchange symmetry f
atoms in the same group of atoms, it is sufficient to ju
consider the reduced density operators denoted by Eq.~21!
to deal with all possiblerQj

’s. That is, we do not need to
consider, say, tracing over the first and third atoms in the fi
FORT and the second one in the second FORT. This is s
the rQj

, this yields, is identical to that produced by tracin
over the first two atoms in the first FORT and the first one
the second FORT.

We now find @rQj
#2 and then trace over the remainin

2N2(T1V) atoms, producing

Tr~@rQj
#2!5TrS (

PW 50W

Ẁ

(
PW 50W

Ẁ

(
N,N8,M,M8

`,`,`,`

f ~N,N8! f ~M,M8!

3^PW uN&uN&^N8u^N8uPW &^PW uM&uM&

3^M8u^M8uPW & D , ~22!

where, in analogy withPW , PW is a dummy variable given by
PW 5(P 1

(1) ,P 2
(1) , . . . ,P T

(1) ,P 1
(2), . . . ,P V

(2)) where P a
( j ) de-

notes a vibrational number state in thex direction for theath
atom in thej th FORT.

Using Eq.~22!, we now numerically determineSL(rQj
)

for particular values ofN andr for arbitraryT andV values.
Our results provide lower bounds forS(rQj

) as

SL(r)/ log2e<S(r) as can be verified by considering
power-series expansion forS(r). Hence, knowingSL(rQj

)

for all bipartite splits ofucC.M.& allows us to infer a lower
bound for min(Sall) and hence one forEMBE . We thus cal-
culate allSL(rQj

) for N52,3,4 for a range ofr values nu-
merically using straightforward C11 code. These results ar
then used to place lower bounds onEMBE(ucC.M.&) for four-
way, six-way, and eight-way entanglements which appea
Figs. 4~a! and 4~b!.

As ucC.M.& is the sum of an infinite number of state ve
tors, to calculateSL , in practice, we truncate the sum overN
in the definition of ucC.M.& at a finite value. This induces
errors in our lower bounds forEMBE(ucC.M.&) for which up-
per bounds can be derived. For all data points in Figs. 4~a!
7-9
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and 4~b!, the errors on our lower bounds forEMBE(ucC.M.&)
have been calculated to be less than 1023 and hence are
negligible.

Two interesting features of Figs. 4~a! and 4~b! are that,
first, for a givenr value our lower bound onEMBE decreases
for increasingN. It is possiblethat we can understand th
behavior by observing that for constantr we initially have a
fixed entanglement resource, namely, the entangled outp
the NOPA. It is conceivable that the decrease under con
eration results from this fixed resource being spread amo
a larger number of subsystems as we increaseN thus, per-
haps, causing it to distribute less bipartite entanglemen
any given bipartite split ofucC.M.&. In turn, this may decreas
theSL of both halves of an arbitrary split, thus explaining t
decrease in our lower bound forEMBE for increasingN. The
second interesting feature of Figs 4~a! and 4~b! is that as we
increaser EMBE increases as expected, given that an
creasedr means that we have more center-of-mass entan
ment.

V. DISCUSSION

Throughout the paper, we have emphasized thatucC.M.&
contains 2N-way entanglement. However, for this entang

FIG. 4. Plots of lower bounds onEMBE ~dimensionless! for
ucC.M.& as a function ofr ~dimensionless! for ~a! N52 ~four-way
entanglement!, and ~b! ~i! N53 ~six-way entanglement! and ~ii !
N54 ~eight-way entanglement!. Note that in all figures, we have
linearly interpolated between points 0.1 units apart on horizo
axes. Numerical errors are less than 1023 for all data points.
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st
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ment to be meaningful, it must have observable effects. O
feature of the system under consideration that makes its
tanglement conducive to producing such an effect is the
that the atoms in the system are spatially separated and
in principle, are individually accessible. Thus, for examp
we could shine a sufficiently narrow laser beam on one of
atoms and, provided it did not propagate perpendicular to
x axis, implement a local displacement on the vibration
state of the atom in thex direction. Furthermore, accessin
individual atoms is made easier by the fact that neighbor
atoms do not have be located at successive cavity-fi
nodes. Instead, they can occupy every second, third
node, thus increasing their spatial separation and makin
easier to address them one at a time. Another advantag
consequence of the fact that each atom is individually acc
sible is that it permits us to perform measurements on
vibrational states of single atoms, perhaps by employin
certain quantum-optical technique used to measure the p
tion of individual trapped atoms by having them intera
strongly with a low-photon number cavity mode@37#.

In light of the considerations of the preceding paragra
some possible applications of the entanglement inucC.M.& are
as follows.

a. Violations of inequalities based on local realism.A
number of such inequalities for an arbitrary number of qu
tum systems have been formulated@38#. Given the close con-
nection between violations of these inequalities and
tanglement,ucC.M.& is the sort of state we might expect t
violate at least some 2N-party inequalities based on loca
realism. However, as the Hilbert space for the vibratio
motion each atom is infinite dimensional and not two dime
sional ~as is the case for qubits! the violations may require
discretizing or ‘‘binning’’ measurement results of a contin
ous variable such as quadrature phase amplitude.

b. Solving quantum communication complexity proble
(distributed quantum computing).Quantum communication
complexity problems@39# involve a number of parties at
tempting to evaluate some functionf for a particular input
string. Each party is given part of the input string and th
uses shared prior entanglement, local classical computa
and public communication in attempting to evaluatef. In
such a scenario, the prior entanglement can allow the ev
ation to be performed in a superior manner to that attaina
classically. As the entanglement inuc&C.M. is such that every
atom in the corresponding system is with every other one
is a quantum resource seemingly well suited to being of
to in solving quantum communication complexity problem
better than can be done classically.

c. Continuous-variable quantum computatio
Continuous-variable quantum computation@40# involves
quantum computing with infinite-dimensional quantum sy
tems as opposed to the usual two-dimensional qubits.
most obvious way to perform this sort of computation w
the system under consideration would be to, first, cons
each atom in it as a qudit in the limit ofd→`. After this, we
would then need to implement two-qudit gates by hav
different atoms interact with each other in a pairwise mann
One method by which this might be accomplished is by
ing a scheme@41# employed in optical lattices to get tw

l
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MULTIPARTITE ENTANGLEMENT AND QUANTUM STATE . . . PHYSICAL REVIEW A 67, 052107 ~2003!
spatially separated trapped neutral atoms of different spe
to interact with one another. This is done by varying t
polarizations of the electromagnetic fields trapping the ato
which has the effect of varying the potentials that the ato
see in such a manner that they move towards each o
Once together, the atoms interact via a dipole-dipole c
pling. It is conceivable that this method could be applied
implement two-qudit gates in the system of interest. O
complication, however, in utilizing this scheme is that it n
cessitates that we modify our system by having the 2N atoms
in it comprised two different species, perhaps, with the s
cies of atom alternating as we move along each linear c
figuration. Nevertheless, while the system under consid
ation may not be the most natural one in which to
continuous-variable quantum computation, there is so
possibility that the entanglement in it could be used to
this.

A. Qualitative results

The thinking underlying Definition 1 is the same as th
which underlies the NPT sufficient condition forM-way en-
tanglement. However, there are significant differences
tween the two. First, Definition 1 involves arbitrary dime
sional subsystems, whereas the NPT sufficient condi
deals only with qubits. Second, the NPT sufficient condit
is a sufficient but not a necessary condition forM-way en-
tanglement, whereas the satisfaction of Definition 1 is b
necessary and sufficient for pure states. Third, the NPT
ficient condition uses the partial transpose to determine
presence ofM-way entanglement, whereas Definition 1 us
the mathematically simpler entity the trace of the square
reduced density operator. Observe that Definition 1 is n
rower than the NPT sufficient condition in the sense tha
only applies to pure states, while the NPT sufficient con
tion is applicable to both pure and mixed states.
-

o

/

s.
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B. Quantitative results

A number of issues surroundEMBE , which we now dis-
cuss.

What does EMBE tell us about what quantum resource w
have?Ideally, we would like to be able to relateEMBE to one
or more quantum tasks or protocols such as distributed qu
tum computation withEMBE telling us something valuable
about how well we can perform these tasks. This is so a
we could do this, then it would increaseEMBE’s utility. Un-
fortunately, however, this has not yet been accomplished

Can we tractably calculate EMBE? For an entanglemen
measure to be useful, it must be tractable and able to
calculated in practice. Unfortunately,EMBE seems to be dif-
ficult to calculate, at least for the state considered.

Although EMBE has the two above negative features w
note that, first, further research may eliminate them and, s
ond, we should consider them alongside the positive featu
of EMBE which are that it is a reasonable measure and tha
helps us to understand the nature of the entanglemen
ucC.M.& and also the capabilities of quantum state exchan
Our results contribute to the understanding of multipar
entanglement involving massive particles and infini
dimensional Hilbert spaces within a context that is not ove
experimentally infeasible.

To conclude, we have shown that quantum state excha
can be used to produce the stateucC.M.& for two sets of
trapped atoms in spatially separated FORTs. We have
shown thatucC.M.& is a 2N-way entangled state and, in add
tion, have placed a lower bound on the amount of such
tanglement that it possesses. Finally, we have discus
quantum information processing tasks that the 2N-way en-
tanglement inucC.M.& could be used to help perform.
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