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Multipartite entanglement and quantum state exchange
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We investigate multipartite entanglement in relation to the process of quantum state exchange. In particular,
we consider such entanglement for a certain pure state involving two groupgsrapped atoms. The state,
which can be produced via quantum state exchange, is analogous to the steady-state intracavity state of the
subthreshold optical nondegenerate parametric amplifier. We show that, first, it posseas@i-way en-
tanglement. Second, we place a lower bound on the amount of such entanglement in the state using a measure
called theentanglement of minimum bipartite entropy
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[. INTRODUCTION product involves computational-basis expansion coefficients
for various (1—1)-qubit states obtained by deleting a qubit

Multipartite entanglement is entanglement that cruciallyfrom the state of interest. Similarly, Wong and Ander§bi
involves three or more particles. A well-known example of it have extended the tangle to an arbitrary even number of qu-
occurs in the generalized Greenberger-Horne-Zeilingebits for pure states. Finally, Biham, Nielsen, and Osborne
(GHZ) state |#)=|0)*M+]1)®M, where M is an integer [12] have proposed th&roverian entanglemerfor a pure
greater than two. Multipartite entanglement is an interestingtate|#) based on how successful Grover’s algorithh3]
quantum resource for a number of reasons. First, it is a keperforms, given the input). The Groverian entanglement
resource in quantum computation @s it has been proved is equivalent to a measure in R¢6]; however, it shows an
that it is a necessary ingredient in order for a quantum cominteresting link between an entanglement measure and the
putation to obtain an exponential speedup over classicajuantum information processing capability of states. In addi-
computatior{ 1] and(ii) it is central to quantum error correc- tion to the measures listed above, a number of others have
tion that uses it to encode states, to detect errors, and, ultélso been proposeQuantum state exchandé4-1§ is a
mately, to help implement fault-tolerant quantum computa-newly formulated process by which information is trans-
tion (see, for example, Chap. 10 of R¢R]). The second ferred from an electromagnetic field to the vibrational state
reason why multipartite entanglement is interesting is that ibf one or more trapped atds). It is implemented using a
can manifest nonclassical correlations such as GHZ-type costimulated Raman process, which couples the electromag-
relations[4]. Finally, it has been conjectured that multipartite netic field to the vibrational state and thus transfers informa-
entangled states contain a wealth of interesting and unexion from the former to the latter. We explain it in more detail
plored physicg5]. in Sec. Il.

In order to quantify the amount of multipartite entangle- In this paper, we show that quantum state exchange can
ment present in a state, a number of measures have bebm used to create an entangled state fidr tPapped atoms
proposed. First, Vedralt al.[6] have suggested a measure of that is a useful quantum resource. We begin in, Sec. Il A, by
multipartite entanglement for a stagpethat is the minimum  explaining the process of quantum state exchange via pre-
relative entropy betweep and any separable state. For sys-senting a detailed example of it within a simple system con-
tems with more than two subsystems, they defined a sepaisting of a harmonically trapped atom interacting with a
rable state as one in which the state of at least one subsysteravity mode. Next, Sec. Il B shows that quantum state ex-
can be factored out from that of the others. In addition, Coff-change can be used to generate an entangled pure state for
man, Kundu, and Wootters’] have extended the bipartite two groups ofN trapped atoms located in two spatially sepa-
entanglement measure called the tan¢ to the three- rated far-off-resonance dipole-force tra@ORTS. In Sec.
tangle that measures three-way GHZ-type entanglementll C, we present a detailed summary of the remaining paper.
Furthermore, Vidal [9] has studied entanglement Secs. lll and IV then investigate the nature of the state’s
monotones-quantities whose magnitudes do not increase2N-way entanglement; that is, the nature of its entanglement
on average, under local transformations—and has proposebat spans across allN2atoms. In particular, in Secs. Il A
thatall of these can be regarded as entanglement measuresid IV, we qualitatively explore this entanglement by pre-
Meyer and Wallactil0] have proposed a measure of “global senting a necessary and sufficient condition for the presence
entanglement” fom-qubit pure states which is the sum of a of M-way entanglement foM-partite pure states, and then
number of terms involving wedge products. Each wedgeshowing that the state satisfies it. In Sec. IV, g@antita-

tively explore the state’s I2-way entanglement by first pre-

senting a different multipartite entanglement measure for
*Electronic address: d.pope@griffith.edu.au pure states in Sec. IV A. This measure is based on the von
Electronic address: milburn@physics.uq.edu.au Neumann entropieg2,3] for all the reduced density opera-
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harmonic

trap Hsyszjz%z fiv(blb;+1/2)+hda’a+ iAo, o
cavity field +hLE(Y.z) oy +E (Y,2,t) o]+ Tigesin(kx)

x(ato_+ac,), v

wherev, vy, andv, are the harmonic-oscillator frequencies
K along the trap’sx, y, andz axes,o, and o_ are atomic
raising and lowering operators for the two-level ato#,
=w.— w0, A=w,— o, & is the complex amplitude of the
external laser field,k=2#/\N, where \=27nc/w;, X
=hil2my,(b,+ bI), wherem is the mass of the two-level
atom, andgg (go e R) is the coupling constant for the atom-
field interaction. Observe thai.— o =v,.

FIG. 1. A schematic diagram of a simple system in which quan- T he following reasonable assumptions are made about the
tum state exchange can occur. A two-level atoepresented by a System, so as to make calculations involving it more trac-
black circlg lies within a harmonic trap that is itself inside an table
optical cavity. The cavity, which is aligned along tkeaxis, sup- (1) The cavity field and external laser frequencies are ap-
ports a mode of frequenay, and has one lossy mirrgwith damp- ~ preciably detuned fronw,, and the two-level atom is ini-
ing constant«) and one ideal one. An external laser beam of fre-tially in the ground state. Thus, the excited internal state is
quencyw, is incident from a direction perpendicular to tkexis.  sparsely populated and spontaneous emission effects are neg-

ligible and can be ignored.

tors obtainable from some pure state of interest by tracing (2 Vibrational decoherence occurs over a time scale
over some of the subsystems for the state. After defining thBUch longer than that of the interaction producing quantum
measure. we then use it to calculate lower bounds on th&tate exchange, as is the case in an ion-trap realization of the
amount of N-way entanglement in the state in Sec. IV B. system[14]. Consequently, it has a minimal effect over our

Finally, we discuss our results in Sec. V. time scale of interest and is ignored. .
(3) The trap dimensions are small compared to the cavity

mode wavelength and thus dimj<1. It follows from this
1. BACKGROUND THEORY that sinkx:nx(bx+bl), where n,=kyh/2mv,. It also fol-
lows that we can arrange things so that thand z depen-
dences of the external laser field are negligible and thus,

Perhaps, the simplest system in which quantum state exassuming&, is time independent, thaf (y,z,t)=&e ',

change can occurl4] involves a two-level atom confined where is a real time-independent amplitude.
within a harmonic trap which, in turn, lies inside a linearly  (4) The damping parametek is such that v,>«
damped optical cavity with one lossy mirror and one ideal>gq7,E/A.
one. The atom’s vibrational motion is described by the anni- Given the assumptions above, and also assuming that
hilation operators, by, andb,. The two-level atom, which g2/A<§ andgo(ata)<é&, , HIM® can be rewritten aEl8]
has a transition frequency af,, couples to both, an intrac-
avity electromagnetic field mode of frequeney described he?
by the annihilation operatom and an external laser of fre- Htsgt"gl'e: > ﬁ,,j(bjfrbj+1/2)+h5aTa__
quencyw, . The cavity and external laser frequencies are j=xy.z A
chosen so as to drive the Raman transitions that couple ad-

0) L
external laser

\j

X axis

A. Quantum state exchange

hgog

jacent atomic vibrational levels. Furthermore, the cavity’s — ——sin(kx)(a’e . +ae %)+ k(aRT+a'R)

axis coincides with the axis, while the external laser beam A

is perpendicular to this axis. Finally, we assume that the har- +H 3)
res

monic trap is centered on a cavity-field node and thus a sche-
matic diagram of this system is as in Fig. 1. S o . .
The system’s Hamiltonian is, in a reference frame rotatind?y adiabatically eliminating the evolution of the internal

at frequencyw, , states. Furthermore, for the system under consideration, it
_ has been showil4] that in the steady-state regime, the vi-
HSingte— Hgyst k(aR™+a'R) +H e, (1)  brational state of the atom in thedirection is solely deter-

mined by the input field(i.e., the light field entering the

: L _ cavity), such that
whereH sis the free Hamiltonian of the reservoir coupled to

the cavity modex is a damping rateR is a reservoir opera-

tor, andHg is the Hamiltonian for the cavity-atom system By(w)= 21 A () (4)
which is X iw—T """
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/ / cavity 2

external lasers

whereb(w)=(1\27) [{_ _ . dtb(t)e' "t T=g3n2e? FORT1 o [FORT2
(A%x), and ap(w)=(1N2m)[{ _.dte “%@(t), where

/ / cavity 1

external lasers

an()=1N2m) [0, do'eiey(w), where
co(w') is the value of the reservoir annihilation operator for
the frequencyw’ at timet=0. The proportionality between
b.(w) anda,,(w) present in Eq(4) denotes that the “statis-
tics of the input fieldlhave beeh ... “written onto” the
state of the oscillator{14] (i.e., onto the atom’s vibrational

state in thex direction). We thus say that quantum state ex- NOPA

change has taken place when this equation holds.
1 X axis
pump

B. System of interest

In this paper, we use quantum state exchange to generate FIG. 2. A schematic diagram for a system involving, first, a
a particular state involving two groups df trapped atoms subthreshold optical nondegenerate param.etrlc amplifi€dPA)
which, we later show, contains multipartite entanglement thaf!Nose output modes pass through Faraday isolétepsesented by
is a useful quantum resource. Our work follows on from Ref F enclosed in a circleand then feed into linearly damped optical
: L ) . ‘cavities (as indicated by the sinusoidal curves inside both cavities
[15] in which it wasassertedthat for a certain system con-

. f N which represent the cavity modes and a,). These cavities are
sisting of two groups ofN trapped atoms, quantum state aligned along thex axis and both have one ideal mirror and one

exchange could generate “a highly entangled state of allossy one(with damping constank). Inside each of them is a
2[N] atoms.” The system we consider can be seen as a COlar-off-resonance dipole-force trgfORT) that, along with a two-
crete example of that described in the last paragraph of Refiimensional far-off resonance optical lattice, confimésdentical
[15]—our main original contributions are, firslemonstrat-  two-level atoms in a linear chain parallel to thexis. Observe that
ing that the state within our system is a multipartite en-the FORTSs' trapping modes are not shown in the diagram. External
tangled one and, second, quantitatively analyzing the multitasers of frequencw, are incident on each atom in both traps from

partite entanglement within it. a direction perpendicular to theaxis.
The system we consider comprises, first, a subthreshold
nondegenerate optical parametric amplifidOPA) [19-21] The Hamiltonian for theth

for which the two external output fields first pass through
Faraday isolators and then each feed into a different linearly ~ Hj o= H?8°m+ Hjot+Hj+«(q RJ-T+ aJ-TR]-)+ Hires: (5)
damped optical cavity for which one mirror is perfect and the
other one is lossy. The axes of both cavities coincide with th
x axis. Each cavity supports an electromagnetic field mode o
frequencywj. that is described by the annihilation operator
a;, Wherej enumerates the cavities. Within thia cavity, lie

hereH{;™"is the free Hamiltonian for the vibrational states
f the atoms, andH |, is the free Hamiltonian for the cavity
field and the atoms’ internal states. The teip is the inter-

action Hamiltonian describing the Raman processes involv-

N identical two-level atoms, each possessing an internal tran- B

sition frequency ofw,. These areptrapped 31 a linear con-qng the cav_|t_y f'ilodﬁhe ext('a\lrnal I?n_?)eTrs(,m?ndlthe atoms. To be
figuration parallel to thex axis by, first, a one-dimensional more speuﬂpHm =hvpSma(DC b +.5)’ yvhereij
FORT[22,23. This consists of cavity mode of frequenay IS the vibrational frequency O.f the FORT n thh gawty
which exhibits a standing-wave pattern along xeis. The (which we call thejth FORT) in the X 'd|re§:t|on. T.h's. fre-
frequencyw is strongly detuned from all atomic resonant dU€NCY 1S equal tao;c—w, . The HamiltonianH,q is, in a
frequencies and thus the cavity mode’s field exerts dipolérame rotating at frequency, ,
forces on the atoms, trapping each of them near a separate

node of the field. In addition, the FORT’s axis is parallel to

the x axis and it thus traps the atoms in thelirection. The Hjo=16a/a;+#hA 2 a{Poi™, (6)
atoms are also tightly confined in tlyeandz directions by a m=t

two-dimensional far-off resonance optical lattife4—26

and thus move negligibly in these directions. The combinedvhere 6= wj.— o, A=w;—w_, and o-J(T) and o-J(T) are
effect of all the trapping fields is to confine each atom in itsraising and lowering operators for the internal states of the
own one-dimensional trap parallel to tkexis. Furthermore, mth atom in thejth trap. The ternH, is

the atoms are located such that the mean position of each

N

atom coincides with a node of the cavity field described by N

a;. _The ann|h|lat1iE|on ope_ratdvj)_( descn_bes the \/_lbrat_lonal Hj =% > 5L(y.2,t)UfT)+5.’_’(y,Z,t)U,(T)

motion of them™ atom in thejth trap in thex direction. m=1

Finally, external lasers of frequenay, whose beams are N

perpendicular to the axis are incident on all atoms; Fig. 2 +4 sin(kix: ) (aloM + g (M 7
illustrates the system under consideration. gomzzl kXm)(@joj=+ o), ()
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where & is the complex amplitude for all external lasers, identically—aside from the factor ofN—to the manner in
kj=wjc/c, andgg (goe R) is the coupling constant for the which b, couples toa. It follows that as quantum state ex-
atom-field interaction. FinallyH; s is the Hamiltonian for change takes place in the system describedHBiJg® with
the external reservoir that couples to fftle cavity for which  information about an input electromagnetic field being trans-
R; is a reservoir annihilation operator andis a damping  ferred tob,, it also occurs in the system describedHbyyy
constant. due to the correspondence between the two system’s Hamil-

The following feasible assumptions are made about thgonians. Thus, in the latter system, information about the
system in order to simplify calculations for it and to focus oninput field is transferred to the center-of-mass mode for the
its most important aspects trapped atoms in th& directionjust as if this mode was a

(1) The cavity field and external laser frequencies are apvibrational mode for a single harmonically trapped atom
preciably detuned fromw,, and all two-level ions are ini- The only difference between the-atom case and one de-
tially in the ground state. Thus, the excited internal states argcribed byHS"9 s that the effective coupling in the former
sparsely populated, and spontaneous emission effects atg§se is increased by a factor @K. This conclusion can also
negligible and can be ignored. , be verified via comparing the Langevin equations BSf”

(2) Vibrational decoherence occurs over a time scaleyyqp,  pye to symmetry considerations, collective modes
much longer than that of the interactions producing quantumy o ‘than the center-of-mass modes do not absorb any pho-
state exchange and consequently can be ignored. tons in modesa; anda,. Thus, assuming that these other

(3) The wavelength of the cavity mode describedehys  5qes are initially in vacuum states, they remain so during
much greater than the distance that any atom injtherap quantum state exchange.

strays from the cavity-field node about which it is trapped. " |, Ref. [15], it was shown that we can transfer the intra-

Thus, sinkxy)=kxn<1 and hence all atoms experience acqyity steady state for the subthreshold nondegenerate para-
potential that is, to a good approximation, harmonic. Thisyetric amplifier which is

justifies the form ofH{"™.

(4) All atoms are tightly confined in thgandz directions.
This allows us to ignore thg and z dependences of the
external laser fields and thus, assumégis time indepen- 9= oamr Zo tant'r[n)y[n),, €)
dent, it follows that&, (y,z,t)=E&e ', where& is a real "
time-independent amplitude.

(5) The damping parametek is such thatv,>«  where the subscripts 1 and 2 denote the two output modes
>do7jx JNE/A, where njx=KjVhl2mv;,, wherem is the  andr is a real squeezing parameter, into the vibrational states
mass of each atom. in the x direction for two single trapped atoms in different

Given the assumptions above, we can wiig, in harmonic traps. Using the correspondence between the quan-
terms of normal-mode creation and annihilation operatorsum state exchange processes involving a single harmoni-
(by adiabatically eliminating the evolution of the internal cally trapped atom antl harmonically trapped atoms dem-

o

state$ as onstrated above, it follows that in the system illustrated in
Fig. 2 we can transféry) into the center-of-mass modes in
N 2 the x direction for the two sets oN trapped atoms, thus
Hmg(m) . & t, PNE L
Hjtota,=ﬁmE:1 vix| Bjx U Bjx > +hoa'a— producing in the steady state,
N
hi9omix \/Nt‘f( - 1 =
_ (B(m)-i- B(m”)(a- e 1fL _
A BB [Vem)= goghr 2, BT IANINY2, (10
+ae'’) | +k(aR +a/R)+H es, 8 I
&) | (@R + 3Ry Hjres ® where |\); denotes thecenter-of-maswibrational number

state for thex direction with eigenvalugV for the atoms in
whereB{” is the annihilation operator for theith normal ~ the jth FORT. In writing this state, we have omitted the
mode for thejth trap in thex direction. For exampleB!!) is ~ States of collective modes other than the center-of-mass

J .
a center-of-mass mode annihilation operator, whiclB}'gQ modes as we have assumed these other modes are in vacuum

=1/\/N(bj()})+b](f)+ 3 _b});:j)) while ngs) is the annihilation  States throughout the quantum state exchange process.

; L Importantly, the process of creatingc ) just outlined
(2)— C.M.
opergt)or {%r the breathing mode which is Bj; 12 does not seem to be overly experimentally infeasible. This is
(—bj’+bjx’) whenN=2.

X (1) ; so as optical cavities and nondegenerate, optical parametric
Comparing Eq(8) to Eq.(3), we see thaBj,” in EQ.(8)  amplifiers have been widely realized quantum optical labo-
plays an almost identical role to that bof in Eq. (3). Given  ratories for some time. In addition, neutral atoms have been
that sinkx)=n(b,+b}) in Eq. (3), the only difference be- confined within standing-wave dipole-force traps that, in
tween the forms in which the two operators appear resultsurn, lie within optical cavitie§27]. Relatedly, experiments
from a factor of\/N appearing in front of in Eq.(8). Asa in which a single harmonically trapped ion has been placed
consequencel?:fi) in Eqn (8) couples to the cavity moda; within an optical cavity have been conduc{&8].
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C. Summary cess consisting of particular local operati¢@8]. This basis
In this paper, we explore multipartite entanglement in re-consists ofM-qubit generalized GHZ states of the fotu)

lation to quantum state exchange and in Sec. llI, follow on= 1N2(|j)|0y=[2N"1~j~1)|1)), where | is a natural
from a multipartite entanglement condition implicit in work humber that we write in binary a#d—1 bits, i.e. ]

by Dir and Cirac[29] by presenting a different condition. =lJ1j2. - - - .jm-1, Wherejy is thexth bit in j's binary rep-
The satisfaction of this different condition implies that any 'esentation. Given these two things, the NPT sufficient con-
pure state comprising d¥l subsystems is-way entangled. dition states thap is M-way entangled for a giveNl-partite
Here, anM-way entangled state is one possessing entangIeSP"t if the diagonal state that it depolarizes to is such that all
ment that spans acrobssubsystems as does the generalizedPipartite splitsthat containthe M-partite split have negative
GHZ state|#)=]0)®M+]1)®M. After presenting this condi- partial transposes. Bipartite splitis one that divides a sys-
tion, we then use it to showqualitatively that |yc,) is (€M into two parts, i.e., a two-partite split. Furthermore, a

2N-way entangled. In Sec. IV, wguantitativelyconsider the 3|part|tetspl|t thattcontambsan M]:parutef ;ﬁ“t Ibs th? one thf‘t
entanglement inc ). We introduce a multipartite en- 0€s Not separate members of any oTWhSUbSyStems onto

two different sides of the bipartite split; that is, one that does
tanglement measure for pure states we callghi&nglement L . !
I . . o - not cross any of the divisions created by tepartite split.
of minimum bipartite entropgr Eyge Which is the minimum
of the von Neumann entropies of all the reduced density
operators obtainable from some pure states of interest by
tracing over some of the subsystems for the state. After this, Following on from the NPT sufficient condition, we pro-
we useEyge to calculate dower boundfor the amount of pose a necessary and sufficient condition for the existence of
four-way, six-way, and eight-way entanglements| i ;) M-way entanglement fdvl-partite pure states. Our condition
for N=2,3,4, respectively, for a range ofvalues. Finally, is based on the traces of the squares of reduced density ma-
we discuss the nature of our results. trices obtained by tracing over some of the subsystems con-
It is interesting to investigate the nature pfc\y)'s  stituting our system of interest. After formulating it, we use it
2N-way entanglement for a number of reasons. First, it haso demonstrate thdt/c ) containssome2N-way entangle-
been claimed—but not demonstrated—that ) is “en- ments. Our motivations for employing our condition, instead
tangled state of all [N]- - - atoms”[14]. It is thus interest- of the NPT sufficient condition, are thét) it seems to be
ing to investigatd -\ )'s 2N-way entanglement in order to mathematically simpler to calculate whether or not our con-
see if this implied claim is true. Second, it is interesting todition is satisfied andii) as we are concerned with a pure
investigatd ¢ v.)'s 2N-way entanglement as it israassive- ~ state, our condition is stronger than the NPT sufficient con-
particle state that is important as, to date, mostiassless dition in the sense that it is both necessary and sufficient as
photons have been used to experimentally investigate erppposed to just being sufficient.
tanglement. Third, if the claim is true, then it means that Our M-way entanglement condition utilizes the fact that
|cm) is a state consisting ofN entangled harmonic oscil- when apurestate| ) for M subsystems i81-way entangled.
lators, each possessing anfinite-dimensionaHilbert space  we cannotwrite it as |¢>=|¢1>Qj®|¢2)5j, Where|¢1>Qj

as opposed to the two-dimensional Hilbert space of a qubignd|¢2>a_ are the states for the subsystems denote@py
that is 2N-way entangled. !

B. Result

andQ;, respectively, and botQ; andQ; denote at least one
subsystem. To put this in another way, wher) is M-way
entangled, there iso way to represent it as the tensor prod-
A. Negative partial transpose sufficient condition uct of two pure states. Consequently, excluding all such pos-
sibilities suffices to show, and is also, in general, necessary
to show, thaf ) is M-way entangled. This can be done by

entanalement?” While answering this question does not tel[irst checking that no single-subsystem state can be factored
9 ) 9 q out from the state of the remainiid — 1 subsystems. We do

us everything about the nature @6 M-way entanglement, it this by checking that the traces of the squares of all the

nevertheless tells us something of interest. One way to an- . . .
swer it, provided thap consists of qubits, is to use a condi- feduced density operators obtainable frég) by tracing

. H 2
tion that can be readily derived from work of Band Cirac over one subgystem are less th::'m one; that 'S["?-‘Efﬂ )
[29]. This condition involves negative partial transposes<1: Wherepq, is the reduced density operator obtained from
(NPT9 [30-32 and thus we name it the NPSUfficient con-  |#)(y| by tracing over the subsystem denotedQ@y, for all
dition. It is sufficient for the presence dfl-way entangle- Q; denoting just one subsystem. We can then repeat this
ment for allp’s consisting ofP qubits, whereP=M, and is  procedure, considering a@;’s corresponding to all pairs of
based on generalizing the notions of separability and insepsubsystems, then all triples, and so forth until we have con-
rability to many-qubit systems. Before stating the condition,sidered allQ;’s corresponding to all sets d® subsystems,
it is useful to mention two things. First, we define anwhereR=|M/2|, where|x| is the largest integer less than or
M-partite splitof p [29], to be a division or split of into M equal tox. It is sufficient to only consider sets of up to those
parts, where each consists of one or more subsystems. Semrresponding tpM/2] subsystems as a necessary condition
ond, we observe that can always be converted to a state for being able to factor out any larger number of subsystems
that is diagonal in a certain basis by a “depolarization” pro-from |¢) is the ability to also factor outM/2| or fewer

IIl. QUALITATIVE RESULTS

Assume that for a certain state we wish to know the
answer to the question “Dogscontain at least somid-way

052107-5



D. T. POPE AND G. J. MILBURN PHYSICAL REVIEW A67, 052107 (2003

subsystems. Underlying the process just described is that @fhere n is the N-component vectorr{;,n,, ... ny), the
seeing vyhether or not we can exclude all the ways fiat state |ﬁ>j:|nl>j®|n2>j' ) .|nN>j . Where |nk>]_ denotes a
could fail to beM-way entangled. o ~ number state for thith atom in thejth FORT, and
Our condition can be formalized as Definition 1 that is as
follows. N\ [N—ny N—ng---—ny_,
Definition 1. For a pure states) for M subsystems, con- R R <n1> N, ) o ( N1 )
sider the seQ whose memberg); are themselves sets of c¢(n,N)=(n|N);= —
subsystems for the system correspondingitp This setQ VM XN
contains all sets oP subsystems for this system, where 1 « m (12)

<P=<|M/2]. Given this,| ) is M-way entangled if and only

if, for all Qj, Tr([ij]2)<1a wherepq, is the reduced den-  The sumz .. vy denotes the sum ovell combinationsof

sity operator obtained by beginning witt#)( | and tracing  N1.N,, ... Ny such thats{. ;n;=N [33]. Using Eq.(11) to

over the subsystent; . represent¢c) in terms of vibrational number states for
To illustrate Definition 1, consider, for example, the GHZ individual atoms, we obtain

state | ) guz=1/v2(|000)153+|111)1,9, where the sub-

scripts 1, 2, and 3 denote subsystemsyof;,z. The param- _ 1 = z

eter P=[3/2|]=1 and consequently thi@sa comprises all [em) coshr /\/Z:o tanHVr(aC%M c(n,/\/)|n)l>

sets of one subsystem and ti@s-{{1},{2},{3}}, where the

numbers again denote subsystems|i@ygy,. For the ele- ® Z c(m N)|rﬁ>2 _ (13)
ment {1}, for example, Tr[p{l}]z)z 1/2. Calculating ac(m.A) ’

Tr([ij]z) for all of Q’s other elements, we find that it is 1/2

in all the three cases. Thus)) gy, satisfies Definition 1 and
hence is said to be 3-way entangled, as is the case.

We now show that the right-hand side of Ef3) satisfies
Definition 1 and thug¢c ) is 2N-way entangled. We do
this by first writing| /c ) as the most general bipartite state

To further explain Definition 1, we now apply it to deter- ossible involvina vibrational number states for individual
mining whether the following four-party states are four-wayp ble mvolving vibratl u : indivicdua
atoms. Next, we show that, upon tracing over the atoms in

. (U —
en(tgngled. () v >_1/\/§(|000%234+|111(1>)123”)' +(2) the half of the bipartite split containing the lesser number of
| Zr: 112]0)1® (/000 234+ [11D239), (3) [¢67)=14")12  atoms and then finding the trace of the square of the resulting
®| ¢ >3_4- _ _ reduced density operator, this is less than one. It follows that,
Turning to (1), we see that upon tracing over any singlefor all j, Tr([po ]?)<1. Hence, we satisfy Definition 1 and

subsystem, we produce a reduced density operator of tIEOWcW is 2NJ-way entangled.
form PQJ-:1/2(| 000000 +[111)(111)  for  which Dividing the atoms in¢¢ ) into two subsystem# and
Tr([ij]z) =1/2. Similarly, tracing over any two subsystems B containing, respective\R and 2N—R atoms R#0), we
produces a density operator of the fomgjzl/2(|00>(00| can write|c v) as
+]11)(11]) for which, again, Tr[ij]2)=1/2. Thus, Defi- o
nition 1 gives the correct result thag") is four-way en- |¢C_M,>=2 cilfi)a®lgi)s, (14
tangled. For(2), tracing over the first subsystem produces 1=0

(3)y — ich i
|h'/’4 >_1/‘/§(|209>234f+|1ﬁ]>234)’ which Is a pure state a:nd where| |f)al =/|gi)gl|=1 and thef;)a, but not necessarily

en_cz.e_Tr[ij] )=1fort 2 cgrrespondlng Consequently, ha gy, ‘are mutually orthogonalAs we can always write
Definition 1 tells us thaty{”) is not four-way entangled, as |y ) in biorthogonal form(34], there exisig;)s that are
is the case. Fof3), tracing over any one subsystem producesmutually orthogonal. However, we are not concerned with
the mixed statep=ll2®|d>+234<¢*| and so we might this form in the current calculation and so do not consider
be tempted to infer thaf ¢43)) is four-way entangled. such a decomposition ¢ ).) To give an example, when
However, when we trace over subsystems 1 and 2 or sulN=2 andA contains the first atom in the first trap
systems 3 and 4, we produce the pure state) for which

Tr([| ¢+ )" |1%)=1. Hence, Definition 1 correctly tells us tanhr
that | 4> is not four-way entangled. |[¥em)= mm)A@ 000+ ——|10Ds

In applying Definition 1 to| ¢ ), we first write| e m)
in terms of vibrational number states for thé&l Zatoms in- N tanhr 110t tankfr 20Pat V2tanir 1
volved as we wish to see if they arédl2avay entangled. As a 2 110 4 1202¢ 4 [210s
step towards doing so, upon observing thav);
= (BN VA1)|0);, we expresgA); in terms of vibra- N tankfr 2200+ - | + 1)
tional number states in thedirection forindividual atoms as 4 B coshr ' /A

S tanhr tanhr tanfr
M= 2 c(nA)n);, (11) ®| —5 100D+ ——[010p+ ——[1025
ac.) V8
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J2tanir tanker
+ ———— 11D+ ——|120 g+ - -
2 2
1 ) tantfr 00 J2tanRr o1
+ coshr [2)p® 4 |002)5+ 8 |01D)g
tantfr
+ i 0200 g+ -+ |+, (15

where [x)a=[n;=x)a and [X;X,Xs)g=|N=X1,M;=X5,m,
=X3z)g. Here, for examplecy,=1/costr, |fp)a=|0)a, C1
:1/COSH, |fl>A:|1>Al

1 tanhr tanhr
|90>B:WO |000>B+T|101>B+T|110>B|>
tantfr J2tanHr tantfr
+ |202>B+—|211)B+—|220>B
4 4 4
+..
and
1 [tanhr 00 tanhr o1 tankfr 10
|gl>B_Wl ——|00Dg+ ——|010g+ W' 28
J2tanRr tanker
T 11D+ — 120+ - - |,

where M, and M, normalize|gg)g and|g4)g. Upon trac-
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ground states for some of theN2atoms in|¢c ). For ex-
ample, in Eq.(15), |f/*95=]0)a. Given that, in general,
|f7°'9 A contains zero individual phonons, only states with an
evennumber of individual phonons in total are present in the
|gi)g with the same index, which we denote byg/®%g.
This is so as we require the total number of individual
phonons in {79 ,®|g7*"9g to be even.

In addition to|f7*"% o, becauseyc ) includes the term
|N=1),|N'=1),, there also exists aif;)» in Eq. (13) con-
taining just one individual phonon, which we denote as
[f0"% . For example, in Eq(15) [f"9a=|1). In general,
the|g;)g with the same index as|f"% 4, which we denote
by |g?"g, comprises states with andd number of indi-
vidual phonons in total as dictated by the requirement that
the total number of individual phonons fdi™"% A,® |99 g is
even. Thus|g’"9g is orthogonal to|g7®%g and the corre-
sponding|d;;|2=|(g7*"197"%|*=0. Returning to the right-
hand side of Eq(17), this means that Tfpqg,1%) <1 for Qu
and thus Definition 1 is satisfied. This allows us to infer that
|cm) is 2N-way entangled and consequently we have veri-
fied the assertion thatyc ) is an “entangled state of all
2[N]- - - atoms"—except, of course, whan=0.

IV. QUANTIFYING THE AMOUNT OF 2 N-WAY
ENTANGLEMENT IN [¢fc )

A. Theory

In the preceding section, we presented a qualitative result
that showed thatyc ) possessed someN2way entangle-
ment. However, we would also like to know how much

ing over A in Eq. (14) and squaring the resulting reduced 2N-way entanglemenfy/c ) contains. For this reason, we

density operatopg,, we obtain

[PQA]ZZHEZO Ci2012|9i><9i|9j><9j|- (16)

Calculating the trace d[prA]2 yields

Tr([po,]2)= X cZc?|d;|?, (17)
A i,j=0

whered;;=(gj|g;). As the trace of a density operator is al-

ways one, we know that
> c?)(E c,—z) =1. (18)
i=0 i=0

It thus follows from Eq.(17) that, asc;#0 for all i, if
|dij|?<1 for at least onal;; then Tr(pq,]*t)<1.

00,00

2 cief=

i,j=0

presentquantitative measure ofM-way entanglement for
M-partite pure statesfor an arbitraryM. This measure is
based on the von Neumann entropies of reduced density op-
erators produced by considering all bipartite splits for some
state of interest. We call it thentanglement of minimum
bipartite entropyor E,;ge, which we soon define. After this,
we then argue that it is a plausible measure and finally, use it
to calculate aower boundon the amount of R-way en-
tanglement in e ) -

For a pure statgy) with M subsystemsE g is

Ewmee(|#)) =min(Sy), (19

whereS, is the set containing the von Neumann entropies of
all the reduced density operators obtained frpmy | by
tracing over a set oP subsystems if¢), where =P
<|M/2|. The function minK) returns the smallest element
of the setX. Thus, as the von Neumann entropies of both
sides of any bipartite split dfiy) are equa[2], S,; contains

As the center-of-mass stat#),| V), has an even number the von Neumann entropies fall the reduced states that we
of center-of-mass phonons in total{2, when we express it can generate from¢). For example, wher¢)=|¢)ghz
as a sum of vibrational number states for individual atoms=1/,/2(|000);,3+|111);,3, the sets of subsystems contain-
these states all contain an even number of individualng P members that we trace over in obtainiSg, are{1},

phonons in total. Furthermore, becausge y) contains the
state|N'=0),|A'=0),, |fi)a in Eqg. (14) for one particular

{2}, and{3}, where the numbers denote either the “1,” “2,”
or “3" subsystems ofl /) gnz. As the von Neumann entropy

value ofi, which we denote byf*"% », is a tensor product of of the statep is S(p) = — Tr(p log,p) [2,3], the von Neumann
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To further highlight the plausibility oE g, consider the

XA following analogy. Imagine an ordinary chain wik links.
(v | If M—1 of these are strong and the other one is weak, then
S, ><B the chain is close to breaking and so only has a small amount

i of “nonbrokenness”—even though all but one of the links
S are solid. This is so as nonbrokenness is a wholistic property
g that is a manifestation of the nature of Mllinks. Relating
this to Eyge, just as nonbrokenness is a wholistic property,
. so Eyge measures a wholistic property, namelfsway en-
Sa tanglement, that relates to the nature ofMlsubsystems of
FIG. 3. Coordinate space illustrating tHajse can be seen as a M-partite states. In analogy with a chain with just one weak
distance-based entanglement measure. The distance beajgen  link, anM-partite pure state for which all membersy are
point representing,(|¢)) ={S:.,S,,Ss}, where|¢) is three-way large, except for one, is very close to possessind/rvay
entangled and S;<S,,S;] and B [the point representing entanglement. In this way, we see tligige and, in particu-
Sail $zerd) =10,;, S5}, where |¢,e9 appears to be the closest |ar, the presence of the min function in it seems plausible.
pure state with no three-way entanglemen{¢o] is Eyge. The Another interesting feature of,ge is that it satisfies
quantitiesS,, S, andS; are dimensionless. three well-known desiderata fbipartite entanglement mea-
sures[35], as we now show(lt seems plausible that these
entropy for the reduced density operator generated fronshould also be desiderata fawltipartite entanglement mea-
| Y enz{¢| upon tracing over the subsystem denoted by anysures) They are the following:

one of these sets is 1. Hencg;={1,1,14 and so (1) the proposed entanglement measure is zero for all

Ewvee(|¥)enz) =1. Thus, we say thdi)) gz has one unit of  product states;

three-way entanglement. (2) the proposed entanglement measure is invariant under
To provide some insight int&yge, it is now shown that local unitaries;

it can be thought of as distance-basedneasure oM-way (3) the proposed entanglement measure does not increase,

entanglement; that is, as measuring the distance betjyéen on average, under local operations, classical communication
and the closest pure state with zevbway entanglement (LOCC) and division into subensembles.

given a certain metric. To understand this, observe that, na- Beginning with (1), if the state of interest is a product
ively, it seems reasonable to think that there exists a purétate, where we define a product state to be one for which we
state] i,er) With zeroM-way entanglement that has an iden- €an factor out the state of_at least one of the §ubsystems, then
tical Sy to |4)'s except for one element. This element cor- &t [€ast one member &, is zero and SE&yge is also zero,
responds to the smallest elementSgf(| ) and is zero. The as we desire. Turning t2), we note that for a general bi-

next step in comprehending the distance-based nature Bf’:ll’tlFe spht,' the von Ne'umann entropy of the reduced depsﬂy
matrix obtained by tracing over the subsystems on the side of

Ewee is representingsy(|¢)) and Su(|¢zerd) by pointsA the split with the lesser number of particles is invariant under

and B, respectively, in a coordinate space for which eacrhnitary transformations that act on only one subsystem. Con-

coordinate denotes the possible values of an element of eé'equently, if we define local unitaries to be those which act

ther Sa(|#)) or S| ¢er0); that is, a space that graphically just on a single subsystem, thERse satisfies(2).
representsSy(|¢)) and Sy(|yzer9). For such a space, we * |y considering(3), it is important to remember thétyge
observe that no pure state with zevbway entanglementis s only for pure states and thus we ignore local operations
represented by a point closer AothanB. It is in this sense pat convert|4) to a mixed state. For example, we do not
that we think of| #,¢r9 as being the closest pure stat#9  consider local operations that transfof#) to a state that is
with zero M-way entanglement. Finally, the distance-basedclose to a maximally mixed state and thus has large values
nature ofEyge(|#)) can be seen by observing that the dis-for the von Neumann entropies of all its reduced states. We
tance betweeA andB is Eyge(|#)). This pointis illustrated  choose this example as such local operations increase the
in Fig. 3 for the three-way entangled staig) comprising value of min@S,;) for a system of interest. However, they
three subsystems for whicBy(|¢))={S;,S,,Ss}, where  manifestly do not increase itdl-way entanglement, but in-
$,<$,,5; ands,;,S,,S;#0. Naively, the closest pure state stead transform its state into one for whiElyge is not ap-

to |¢) with no three-way entanglemef,.,o seems to be plicable. With this constraint in mind, we define a local op-
such that Sy(| ¢zer0) =10,S,,S;s}. RepresentingS, (| #)) eration to be one that involves just one subsystem such as a
and Sy(| ¢,er9) graphically in the manner described above projective measurement on a single subsystem. Given this
by pointsA and B in Fig. 3, we observe that the distance definition, it can be shown that fobipartite pure states
between these IS, = Eyge . Generalizing this notion, we see LOCC and division into subensembles cannot increase the
thatEyge can be viewed as measuring the distance betweeaverage entanglement of any state as measured by the von
|) and the nearest pure state with zéveway entangle- Neumann entropy of its reduced statestropy of entangle-
ment. This distance seems to be a plausible measyig)sf  menp [25]. It follows that they also cannot increase any
M-way entanglement and thi&,ge appears to have an un- member ofS,(|#)), on average, as these faithfully measure
derlying intuitive motivation. the bipartite entanglement i) given some bipartite split
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for it. Thus, Eyge also cannot increase, on average, undevhere P is a dummy variable given by P

LOCC and division into subensembles and&sge satisfies = (p{,p{, ... p{M p{?. ... p®). Herep!) denotes a
3. _ o vibrational number state for theth atom in thex direction in
Another well-known desideratum for a bipartite entangle-y,o jth FORT, b=(0(1),0(2),0(3), Qrsv), and -

ment measure is that it edditive over tensor produc{85].
However, it can be shown that,ge is superadditivethat is,
the M-way entanglement of a combined state generated fro v N -
two states witha andb units of M-way entanglement can be tion such that a sum of the for;_;, whereX andY are
greater thara+b (but, importantly, not wheiMM=2). Itis the F-component vectors X;,X,,...Xg) and

an open question as to whether or not multipartite entangletY,,Y,, ... ,Yg), respectively, denotes the set of sums
ment is additive and so we do not know if the superadditivitysY1 sY2 Y3 . sYF  Eurthermore. we also assume

X1=0"X,=0=X53=0 Xg=0 '
of Eyge represents a flaw. 1 2 3 R
For Eyge to be a reasonable measure, it ought to reducdhat a state of the form[X) denotes the statgX,)

to the standard pure state bipartite entanglement measure &fiX2) - - - |X¢). Note that due to an exchange symmetry for
the entropy of entanglement. FEyge, when N=1, atoms in the same group of atoms, it is sufficient to just

we have Eyge=min(Sy) =Sy, Where Sy, is the von consider t_he reduced_ density opera}tors denoted by(ZHyj.
Neumann entropy for the reduced density Operai% to deal with all p035|blepQj s. That is, we do not need to
—Tr(|¥)(y]), and so we recover the desired mea}sureconsider, say, tracing over the first and third atoms in the first
namely, the e’ntropy of entanglement. Finaliy,sc seems to FORT and the second one in the second FORT. This is so as

be plausible as foq‘:,b):\/E|O>®N+\/1Tc|1>®N, where c the Q) this yields, is identical to that produced by tracing
€[0,1] and N is a positive integerEyge=—clog,c—(1  over the first two atoms in the first FORT and the first one in

—0)logy(1—c). This expression increases monotonically inthe second FORT. , N
the intervalc e [0,1/2] and attains its maximum value of one ~ We now find[pq,]° and then trace over the remaining
for c=1/2. Such behavior seems reasonable. 2N—(T+V) atoms, producing

=(%1),%(2),®(3), - - - P(1+v)), Where a bracketed sub-
rﬁcript enumerates the elementsegboog. We adopt a nota-

B. Results R

In this section, we usk,,ge to calculatdower boundson Tr 2y =Ty 5 FNNVEM M
the amount of Rl-way entanglement present jic y ) for (Lpo, 19 z::a ga N,M%,Mr NADHMM')
N=2,3,4, for a range of values. We obtain these lower

bounds by, first, calculating 1[rij]2) for a generalQ;. X(P|NY NN [(NT|PY(P| M) M)

Next, we determine thknear entropy %(ij) [36] from the

relation SL(ij)=1—Tr([ij]2) and then use the fact that X(M’I(M’Iﬁ) , (22)
S, (p)/log,e< S(p) to obtain our lower bounds. We calculate

a lower bound rather thaBgg itself as it is computationally

infeasible to calculat&,,zg due to the fact that it is compu- o

tationally infeasible to calculate the required von Neumanrwhere, in analogy wittP, P is a dummy variable given by
entropies of reduced density operators given the infinitep— (p(1) p(H — pW p@  p@y where PO de-

dimensional bases of the harmonic oscillators comprisingges a vibrational number state in thdirection for theath
|#cm). This is so as these are generally calculated by firsbtom in thejth FORT.

diagonalizingp, and it is computationally infeasible to do Using Eq.(22), we now numerically determing (po,)
]

this, in general, whep is a square matrix of infinite dimen- for particular values oN andr for arbitrary T andV values.

sions. .
We begin with the initial density operatopc Our results provide lower bounds forS(ij) as

=|em) e that can be written in the center-of-mass SL(p)/10g:e<S(p) as can be verified by considering a
number-state basis as power-series expansion f&(p). Hence, knowingS (pq)
for all bipartite splits of| ¢ ) allows us to infer a lower
bound for minS,;) and hence one foEyge. We thus cal-

pC-M-:A%\:ﬂ FNNIN 1IN 2 N[N 20 oyjate allS (pq,) for N=2,3,4 for a range of values nu-

' merically using straightforward €+ code. These results are

where f(N,A7)=tanh"*V'r/cosHr. To obtain a general then used to place lower bounds Byge(|#cm)) for four-
pq,, We trace over the firsf atoms in the first FORT and the Way, six-way, and eight-way entanglements which appear in

i . o Figs. 4a) and 4b).
first V in the second one, arriving at . o
9 As |cm) is the sum of an infinite number of state vec-

00,00

% o tors, to calculatés, , in practice, we truncate the sum over
_ FN B By, in the definition of|4c ) at a finite value. This induces
Py 2‘5 sz:‘/ NANPIN 1Nz AN |(N7[P) errors in our lower bounds fdyge(| e )) for which up-

(21 per bounds can be derived. For all data points in Figa). 4
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0.5 , ' , ' ment to be meaningful, it must have observable effects. One
feature of the system under consideration that makes its en-
0.4 2) tanglement conducive to producing such an effect is the fact
Ty that the atoms in the system are spatially separated and thus,
ur in principle, are individually accessible. Thus, for example,
503 we could shine a sufficiently narrow laser beam on one of the
‘g’ atoms and, provided it did not propagate perpendicular to the
802 X axis, implement a local displacement on the vibrational
o state of the atom in th& direction. Furthermore, accessing
§01 individual atoms is made easier by the fact that neighboring
' atoms do not have be located at successive cavity-field
nodes. Instead, they can occupy every second, third etc.
0 ; ; ; ; node, thus increasing their spatial separation and making it
0 0.2 0.4 0.6 0.8 1

r easier to address them one at a time. Another advantageous
consequence of the fact that each atom is individually acces-
sible is that it permits us to perform measurements on the
oal b) 1 vibrational states of single atoms, perhaps by employing a

:‘% certain quantum-optical technique used to measure the posi-
o tion of individual trapped atoms by having them interact
g 0.08 i) strongly with a low-photon number cavity mo@&?7].
2 In light of the considerations of the preceding paragraph,
§ 0.06¢ ) some possible applications of the entanglemenginy ) are
5 i) as follows.
£ 0.04f 1 a. Violations of inequalities based on local realisi.
- number of such inequalities for an arbitrary number of quan-
0.02} 1 tum systems have been formula{&d]. Given the close con-
nection between violations of these inequalities and en-
0 : : : : tanglement| ) is the sort of state we might expect to
0 0.1 0.2 0.3 0.4 0.5 : X -
r violate at least some N-party inequalities based on local

realism. However, as the Hilbert space for the vibrational
FIG. 4. Plots of lower bounds ofyge (dimensionlessfor  motion each atom is infinite dimensional and not two dimen-
) @s a function of (dimensionlessfor (a) N=2 (four-way  gjonal (as is the case for qubjtthe violations may require
entanglement and (b) (i) N=3 (six-way entanglementand (i)  giscretizing or “binning” measurement results of a continu-
N=4 (eight-way entanglementNote that in all figures, we have us variable such as quadrature phase amplitude.
linearly interpolated between points 0.1 units apart on horizontaP b. Solving quantum communication complexity problems
axes. Numerical errors are less than 1@or all data points. (distributed quantum computingDuantum communication

and 4b), the errors on our lower bounds f&iyge(|cy)) ~ COMPlexity problemg39] involve a number of parties at-
have been calculated to be less tham3@nd hence are teémpting to evaluate some functidrfor a particular input
negligible. string. Each party is given part of the input string and then
Two interesting features of Figs(a&} and 4b) are that, Uses shared prior entanglement, local classical computation,
first, for a givenr value our lower bound oE,,gz decreases and public communication in attempting to evaluéten
for increasingN. It is possiblethat we can understand this such a scenario, the prior entanglement can allow the evalu-
behavior by observing that for constanive initially have a  ation to be performed in a superior manner to that attainable
fixed entanglement resource, namely, the entangled output efassically. As the entanglementl|igt)c . is such that every
the NOPA. It is conceivable that the decrease under consicitom in the corresponding system is with every other one, it
eration results from this fixed resource being spread amongs a quantum resource seemingly well suited to being of use
a larger number of subsystems as we incredg@aus, per-  to in solving quantum communication complexity problems
haps, causing it to distribute less bipartite entanglement t@etter than can be done classically.
any given bipartite split ofysc v). In turn, this may decrease ¢ Continuous-variable ~ quantum  computation.
theS, of b_oth halves of an arbitrary spllt3 thus e_xplammg the continuous-variable quantum computatigno] involves
decrease in our lower bound f&iyge for increasingN. The  qantum computing with infinite-dimensional quantum sys-
second interesting feature of Fig&a#and 4b) is that as we  gmg a5 opposed to the usual two-dimensional qubits. The

increaser Eyge increases as expected, given that an iny,qq ohvious way to perform this sort of computation with
creased means that we have more center-of-mass entanglgp,e system under consideration would be to, first, consider
ment. each atom in it as a qudit in the limit df— . After this, we
would then need to implement two-qudit gates by having
different atoms interact with each other in a pairwise manner.
Throughout the paper, we have emphasized [ttty ) One method by which this might be accomplished is by us-
contains N-way entanglement. However, for this entangle-ing a schemd41] employed in optical lattices to get two

V. DISCUSSION
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spatially separated trapped neutral atoms of different species B. Quantitative results

to interact with one another. This is done by varying the A number of issues surrounBiygg, which we now dis-
polarizations of the electromagnetic fields trapping the atomgss.
which has the effect of varying the potentials that the atoms What does g tell us about what quantum resource we
see in such a manner that they move towards each othérave?ldeally, we would like to be able to relatg,ge to one
Once together, the atoms interact via a dipole-dipole couer more quantum tasks or protocols such as distributed quan-
pling. It is conceivable that this method could be applied totum computation withEyge telling us something valuable
implement two-qudit gates in the system of interest. One2bout how well we can perform these tasks. This is so as if
complication, however, in utilizing this scheme is that it ne-We could do this, then it would increaggge’s utility. Un-
cessitates that we modify our system by having thes2oms fortunately, however, this has not yet been accomplished.
A . . ) . ?
in it comprised two different species, perhaps, with the spe- Can We tractably calculate fe? For an entanglement

. . : measure to be useful, it must be tractable and able to be
cies of atom alternating as we move along each linear con

. . . .~ calculated in practice. Unfortunatelgyge seems to be dif-
figuration. Nevertheless, while the system under considefg. it to calculate. at least for the state considered.

ation may not be the most natural one in which to do  Ajthough E,se has the two above negative features we
continuous-variable quantum computation, there is som@ote that, first, further research may eliminate them and, sec-
possibility that the entanglement in it could be used to doond, we should consider them alongside the positive features
this. of Eygg Which are that it is a reasonable measure and that it
helps us to understand the nature of the entanglement in

|cm) and also the capabilities of quantum state exchange.

A. Qualitative results Our results contribute to the understanding of multipartite

The thinking underlying Definition 1 is the same as thate_ntangl_ement_ involving ma_ss_ive particles a_nd infinite-
which underlies the NPT sufficient condition fot-way en- dimensional Hilbert spaces within a context that is not overly

experimentally infeasible.

tanglement. However, there are significant differences be-
: L ; . ; To conclude, we have shown that quantum state exchange
tween the two. First, Definition 1 involves arbitrary dimen-
can be used to produce the stdte. ) for two sets of

sional subsystems, whereas the NPT sufficient conditio apped atoms in spatially separated FORTs. We have also
deals only with qubits. Second, the NPT sufficient conditiong, .\ that e ) is @ 2N-way entangled state and, in addi-

is a sufficient but not a necessary condition kway en- {5, ‘have placed a lower bound on the amount of such en-
tanglement, whereas the satisfaction of Definition 1 is bo”langlement that it possesses. Finally, we have discussed
necessary and sufficient for pure states. Third, the NPT Subuantum information processing tasks that thé-@ay en-

ficient condition uses the partial transpose to determine thfanglement i e ) could be used to help perform.
presence oM-way entanglement, whereas Definition 1 uses o

the mathematically simpler entity the trace of the square of a
reduced density operator. Observe that Definition 1 is nar-
rower than the NPT sufficient condition in the sense that it D.T.P. would like to thank Dr. Scott Parkins, Dr. Bill Mu-

only applies to pure states, while the NPT sufficient condi-nro, Dr. Tobias Osborne, and Dr. Tim Ralph for valuable
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