195 research outputs found
Hidden non-Fermi liquid behavior due to crystal field quartet
We study a realistic Kondo model for crystal field quartet ground states
having magnetic and non-magnetic (quadrupolar) exchange couplings with
conduction electrons, using the numerical renormalization group method. We
focus on a local effect dependent on singlet excited states coupled to the
quartet, which reduces the non-magnetic coupling significantly and drives
non-Fermi liquid behavior observed in the calculated quadrupolar
susceptibility. A crossover from the non-Fermi liquid state to the Fermi liquid
state is characterized by a small energy scale very sensitive to the
non-magnetic coupling. On the other hand, the Kondo temperature observed in the
magnetic susceptibility is less sensitive. The different crystal-field
dependence of the two exchange couplings may be related to the different
dependence of quadrupolar and magnetic ordering temperatures in
CeLaB.Comment: 7 pages, 5 EPS figures, REVTe
Quantum phase transitions in the Bose-Fermi Kondo model
We study quantum phase transitions in the Bose-Fermi Kondo problem, where a
local spin is coupled to independent bosonic and fermionic degrees of freedom.
Applying a second order expansion in the anomalous dimension of the Bose field
we analyze the various non-trivial fixed points of this model. We show that
anisotropy in the couplings is relevant at the SU(2) invariant non Fermi liquid
fixed points studied earlier and thus the quantum phase transition is usually
governed by XY or Ising-type fixed points. We furthermore derive an exact
result that relates the anomalous exponent of the Bose field to that of the
susceptibility at any finite coupling fixed point. Implications on the
dynamical mean field approach to locally quantum critical phase transitions are
also discussed.Comment: 13 pages, 9 figures, some references added/correcte
Further analysis of the quantum critical point of CeLaRuSi
New data on the spin dynamics and the magnetic order of
CeLaRuSi are presented. The importance of the Kondo
effect at the quantum critical point of this system is emphasized from the
behaviour of the relaxation rate at high temperature and from the variation of
the ordered moment with respect to the one of the N\'eel temperature for
various .Comment: Contribution for the Festschrift on the occasion of Hilbert von
Loehneysen 60 th birthday. To be published as a special issue in the Journal
of Low Temperature Physic
Propagation and Structure of Planar Streamer Fronts
Streamers often constitute the first stage of dielectric breakdown in strong
electric fields: a nonlinear ionization wave transforms a non-ionized medium
into a weakly ionized nonequilibrium plasma. New understanding of this old
phenomenon can be gained through modern concepts of (interfacial) pattern
formation. As a first step towards an effective interface description, we
determine the front width, solve the selection problem for planar fronts and
calculate their properties. Our results are in good agreement with many
features of recent three-dimensional numerical simulations.
In the present long paper, you find the physics of the model and the
interfacial approach further explained. As a first ingredient of this approach,
we here analyze planar fronts, their profile and velocity. We encounter a
selection problem, recall some knowledge about such problems and apply it to
planar streamer fronts. We make analytical predictions on the selected front
profile and velocity and confirm them numerically.
(abbreviated abstract)Comment: 23 pages, revtex, 14 ps file
Human Health Risk Assessment For Arsenic: A Critical Review
Millions of people are exposed to arsenic resulting in a range of health implications.This paper provides an up-to-date review of the different sources of arsenic (water, soil and food), indicators of human exposure (biomarker assessment of hair, nail, urine and blood), epidemiological and toxicological studies on carcinogenic and non-carcinogenic health outcomes, and risk assessment approaches. The review demonstrates a need for more work evaluating the risks of different arsenic species such as; arsenate, arsenite monomethylarsonic acid, monomethylarsonous acid, dimethylarsinic acid and dimethylarsinous acid as well as a need to better integrate the different exposure sources in risk assessments
Soil macrofauna density and diversity across a chronosequence of tropical forest restoration in Southeastern Brazil
Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run. © 2019 American Physical Society
- …
