172 research outputs found
Hidden non-Fermi liquid behavior due to crystal field quartet
We study a realistic Kondo model for crystal field quartet ground states
having magnetic and non-magnetic (quadrupolar) exchange couplings with
conduction electrons, using the numerical renormalization group method. We
focus on a local effect dependent on singlet excited states coupled to the
quartet, which reduces the non-magnetic coupling significantly and drives
non-Fermi liquid behavior observed in the calculated quadrupolar
susceptibility. A crossover from the non-Fermi liquid state to the Fermi liquid
state is characterized by a small energy scale very sensitive to the
non-magnetic coupling. On the other hand, the Kondo temperature observed in the
magnetic susceptibility is less sensitive. The different crystal-field
dependence of the two exchange couplings may be related to the different
dependence of quadrupolar and magnetic ordering temperatures in
CeLaB.Comment: 7 pages, 5 EPS figures, REVTe
Quantum phase transitions in the Bose-Fermi Kondo model
We study quantum phase transitions in the Bose-Fermi Kondo problem, where a
local spin is coupled to independent bosonic and fermionic degrees of freedom.
Applying a second order expansion in the anomalous dimension of the Bose field
we analyze the various non-trivial fixed points of this model. We show that
anisotropy in the couplings is relevant at the SU(2) invariant non Fermi liquid
fixed points studied earlier and thus the quantum phase transition is usually
governed by XY or Ising-type fixed points. We furthermore derive an exact
result that relates the anomalous exponent of the Bose field to that of the
susceptibility at any finite coupling fixed point. Implications on the
dynamical mean field approach to locally quantum critical phase transitions are
also discussed.Comment: 13 pages, 9 figures, some references added/correcte
Further analysis of the quantum critical point of CeLaRuSi
New data on the spin dynamics and the magnetic order of
CeLaRuSi are presented. The importance of the Kondo
effect at the quantum critical point of this system is emphasized from the
behaviour of the relaxation rate at high temperature and from the variation of
the ordered moment with respect to the one of the N\'eel temperature for
various .Comment: Contribution for the Festschrift on the occasion of Hilbert von
Loehneysen 60 th birthday. To be published as a special issue in the Journal
of Low Temperature Physic
Propagation and Structure of Planar Streamer Fronts
Streamers often constitute the first stage of dielectric breakdown in strong
electric fields: a nonlinear ionization wave transforms a non-ionized medium
into a weakly ionized nonequilibrium plasma. New understanding of this old
phenomenon can be gained through modern concepts of (interfacial) pattern
formation. As a first step towards an effective interface description, we
determine the front width, solve the selection problem for planar fronts and
calculate their properties. Our results are in good agreement with many
features of recent three-dimensional numerical simulations.
In the present long paper, you find the physics of the model and the
interfacial approach further explained. As a first ingredient of this approach,
we here analyze planar fronts, their profile and velocity. We encounter a
selection problem, recall some knowledge about such problems and apply it to
planar streamer fronts. We make analytical predictions on the selected front
profile and velocity and confirm them numerically.
(abbreviated abstract)Comment: 23 pages, revtex, 14 ps file
Human Health Risk Assessment For Arsenic: A Critical Review
Millions of people are exposed to arsenic resulting in a range of health implications.This paper provides an up-to-date review of the different sources of arsenic (water, soil and food), indicators of human exposure (biomarker assessment of hair, nail, urine and blood), epidemiological and toxicological studies on carcinogenic and non-carcinogenic health outcomes, and risk assessment approaches. The review demonstrates a need for more work evaluating the risks of different arsenic species such as; arsenate, arsenite monomethylarsonic acid, monomethylarsonous acid, dimethylarsinic acid and dimethylarsinous acid as well as a need to better integrate the different exposure sources in risk assessments
Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
- …