313 research outputs found
Electronic theory for the normal state spin dynamics in SrRuO: anisotropy due to spin-orbit coupling
Using a three-band Hubbard Hamiltonian we calculate within the
random-phase-approximation the spin susceptibility, , and
NMR spin-lattice relaxation rate, 1/T, in the normal state of the triplet
superconductor SrRuO and obtain quantitative agreement with
experimental data. Most importantly, we find that due to spin-orbit coupling
the out-of-plane component of the spin susceptibility becomes at
low temperatures two times larger than the in-plane one. As a consequence
strong incommensurate antiferromagnetic fluctuations of the
quasi-one-dimensional - and -bands point into the -direction. Our
results provide further evidence for the importance of spin fluctuations for
triplet superconductivity in SrRuO.Comment: revised versio
A Novel Sparse Graphical Approach for Multimodal Brain Connectivity Inference
International audienceDespite the clear potential benefits of combining fMRI and diffusion MRI in learning the neural pathways that underlie brain functions, little methodological progress has been made in this direction. In this paper, we propose a novel multimodal integration approach based on sparse Gaussian graphical model for estimating brain connectivity. Casting functional connectivity estimation as a sparse inverse covariance learning problem, we adapt the level of sparse penalization on each connection based on its anatomical capacity for functional interactions. Functional connections with little anatomical support are thus more heavily penalized. For validation, we showed on real data collected from a cohort of 60 subjects that additionally modeling anatomical capacity significantly increases subject consistency in the detected connection patterns. Moreover, we demonstrated that incorporating a connectivity prior learned with our multimodal connectivity estimation approach improves activation detection
Universality and the magnetic catalysis of chiral symmetry breaking
The hypothesis that the magnetic catalysis of chiral symmetry breaking is due
to interactions of massless fermions in their lowest Landau level is examined
in the context of chirally symmetric models with short ranged interactions. It
is argued that, when the magnetic field is sufficiently large, even an
infinitesimal attractive interaction in the appropriate channel will break
chiral symmetry.Comment: 24 pages, 6 figures, REVTeX. The final version with minor
corrections. To appear in Phys Rev D60 (1999
Understanding bias in relationships between the food environment and diet quality: The Coronary Artery Risk Development in Young Adults (CARDIA) study
Background The relationship between food environment exposures and diet behaviours is unclear, possibly because the majority of studies ignore potential residual confounding. Methods We used 20 years (1985-1986, 1992-1993 2005-2006) of data from the Coronary Artery Risk Development in Young Adults (CARDIA) study across four US cities (Birmingham, Alabama; Chicago, Illinois; Minneapolis, Minnesota; Oakland, California) and instrumental variables (IV) regression to obtain causal estimates of longitudinal associations between the percentage of neighbourhood food outlets (per total food outlets within 1 km network distance of respondent residence) and an a priori diet quality score, with higher scores indicating higher diet quality. To assess the presence and magnitude of bias related to residual confounding, we compared results from causal models (IV regression) to non-causal models, including ordinary least squares regression, which does not account for residual confounding at all and fixed-effects regression, which only controls for time-invariant unmeasured characteristics. Results The mean diet quality score across follow-up was 63.4 (SD=12.7). A 10% increase in fast food restaurants (relative to full-service restaurants) was associated with a lower diet quality score over time using IV regression (β=-1.01, 95% CI -1.99 to -0.04); estimates were attenuated using non-causal models. The percentage of neighbourhood convenience and grocery stores (relative to supermarkets) was not associated with diet quality in any model, but estimates from non-causal models were similarly attenuated compared with causal models. Conclusion Ignoring residual confounding may generate biased estimated effects of neighbourhood food outlets on diet outcomes and may have contributed to weak findings in the food environment literature
Does unmeasured confounding influence associations between the retail food environment and body mass index over time? The Coronary Artery Risk Development in Young Adults (CARDIA) study
Background: Findings in the observational retail food environment and obesity literature are inconsistent, potentially due to a lack of adjustment for residual confounding. Methods: Using data from the CARDIA study (n ¼ 12 174 person-observations; 6 examinations; 1985-2011) across four US cities (Birmingham, AL; Chicago, IL; Minneapolis, MN; Oakland, CA), we used instrumental-variables (IV) regression to obtain causal estimates of the longitudinal associations between the percentage of neighbourhood food stores or restaurants (per total food outlets within 1 km network distance of respondent residence) with body mass index (BMI), adjusting for individual-level socio-demographics, health behaviours, city, year, total food outlets and market-level prices. To determine the presence and extent of bias, we compared the magnitude and direction of results with ordinary least squares (OLS) and random effects (RE) regression, which do not control for residual confounding, and with fixed effects (FE) regression, which does not control for time-varying residual confounding. Results: Relative to neighbourhood supermarkets (which tend to be larger and have healthier options than grocery stores), a higher percentage of grocery stores [mean-¼ 53.4%; standard deviation (SD) ¼ 31.8%] was positively associated with BMI [b ¼ 0.05; 95% confidence interval (CI) ¼ 0.01, 0.10] using IV regression. However, associations were negligible or null using OLS (b ¼ 0.001; 95% CI ¼ 0.01, 0.01), RE (b ¼ 0.003; 95% CI ¼ 0.01, 0.0001) and FE (b ¼ 0.003; 95% CI ¼ 0.01, 0.0002) regression. Neighbourhood convenience stores and fast-food restaurants were not associated with BMI in any model. Conclusions: Longitudinal associations between neighbourhood food outlets and BMI were greater in magnitude using a causal model, suggesting that weak findings in the literature may be due to residual confounding
Low temperature electronic properties of Sr_2RuO_4 I: Microscopic model and normal state properties
Starting from the quasi one-dimensional kinetic energy of the d_{yz} and
d_{zx} bands we derive a bosonized description of the correlated electron
system in Sr_2RuO_4. At intermediate coupling the magnetic correlations have a
quasi one-dimensional component along the diagonals of the basal plane of the
tetragonal unit cell that accounts for the observed neutron scattering results.
Together with two-dimensional correlations the model consistently accounts for
the normal phase specific heat, cyclotron mass enhancement, static
susceptibility, and Wilson ratio and implies an anomalous high temperature
resistivity.Comment: 12 pages REVTEX, 6 figure
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
APOL1-Associated glomerular disease among African-American children: A collaboration of the chronic kidney disease in children (CKiD) and nephrotic syndrome study network (NEPTUNE) cohorts
Background: Individuals of African ancestry harboring two variant alleles within apolipoprotein L1 (APOL1) are classified with a high-risk (HR) genotype. Adults with an HR genotype have increased risk of focal segmental glomerulosclerosis and chronic kidney disease compared with those with a low-risk (LR) genotype (0 or 1 variants). The role of APOL1 risk genotypes in children with glomerular disease is less well known. Methods: This study characterized 104 African-American children with a glomerular disease by APOL1 genotype in two cohorts: The Chronic Kidney Disease in Children (CKiD) and Nephrotic Syndrome Study Network (NEPTUNE). Results: Among these subjects, 46% had an HR genotype with a similar age at cohort enrollment. For APOL1 HR children, the median age of disease onset was older (CKiD: 4.5 versus 11.5 years for LR versus HR; NEPTUNE: 11 versus 14 years for LR versus HR, respectively) and preterm birth was more common [CKiD: 27 versus 4%; NEPTUNE: 26 versus 12%; combined odds ratio 4.6 (95% confidence interval: 1.4, 15.5)].Within studies, HR children had lower initial estimated glomerular filtration rate (EGFR) (CKiD: 53 versus 69 mL/min/1.73 m2; NEPTUNE: 74 versus 94 mL/min/1.73 m2). Longitudinal EGFR decline was faster among HR children versus LR (CKiD: -18 versus -8% per year; NEPTUNE: -13 versus-3% per year). Conclusions: Children with an HR genotype in CKiD and NEPTUNE seem to have a more aggressive form of glomerular disease, in part due to a higher prevalence of focal segmental glomerulosclerosis. These consistent findings across independent cohorts suggest a common natural history for children with APOL1-Associated glomerular disease. Further study is needed to determine the generalizability of these findings
Implications of H.E.S.S. observations of pulsar wind nebulae
In this review paper on pulsar wind nebulae (PWN) we discuss the properties
of such nebulae within the context of containment against cross-field diffusion
(versus normal advection), the effect of reverse shocks on the evolution of
offset ``Vela-like'' PWN, constraints on maximum particle energetics, magnetic
field strength estimates based on spectral and spatial properties, and the
implication of such field estimates on the composition of the wind. A
significant part of the discussion is based on the High Energy Stereoscopic
System ({\it H.E.S.S.} or {\it HESS}) detection of the two evolved pulsar wind
nebulae Vela X (cocoon) and HESS J1825-137. In the case of Vela X (cocoon) we
also review evidence of a hadronic versus a leptonic interpretation, showing
that a leptonic interpretation is favored for the {\it HESS} signal. The
constraints discussed in this review paper sets a general framework for the
interpretation of a number of offset, filled-center nebulae seen by {\it HESS}.
These sources are found along the galactic plane with galactic latitudes
, where significant amounts of molecular gas is found. In these
regions, we find that the interstellar medium is inhomogeneous, which has an
effect on the morphology of supernova shock expansion. One consequence of this
effect is the formation of offset pulsar wind nebulae as observed.Comment: to appear in Springer Lecture Notes on Neutron Stars and Pulsars: 40
years after their discovery, eds. W. Becke
- …