355 research outputs found
Generalization of the Second Law for a Nonequilibrium Initial State
We generalize the second law of thermodynamics in its maximum work
formulation for a nonequilibrium initial distribution. It is found that in an
isothermal process, the Boltzmann relative entropy (H-function) is not just a
Lyapunov function but also tells us the maximum work that may be gained from a
nonequilibrium initial state. The generalized second law also gives a
fundamental relation between work and information. It is valid even for a small
Hamiltonian system not in contact with a heat reservoir but with an effective
temperature determined by the isentropic condition. Our relation can be tested
in the Szilard engine, which will be realized in the laboratory
The Scottish Mental Survey 1932 linked to the Midspan studies: a prospective investigation of childhood intelligence and future health
The Scottish Mental Survey of 1932 (SMS1932) recorded mental ability test scores for nearly all of the age group of children born in 1921 and at school in Scotland on 1st June 1932. The Collaborative and Renfrew/Paisley studies, two of the Midspan studies, obtained health and social data by questionnaire and a physical examination in the 1970s. Some Midspan participants were born in 1921 and may have taken part in the SMS1932, so might have mental ability data available from childhood. The 1921-born Midspan participants were matched with the computerised SMS1932 database. The total numbers successfully matched were 1032 out of 1251 people (82.5%). Of those matched, 938 (90.9%) had a mental ability test score recorded. The mean score of the matched sample was 37.2 (standard deviation [SD] 13.9) out of a possible score of 76. The mean (SD) for the boys and girls respectively was 38.3 (14.2) and 35.7 (13.9). This compared with 38.6 (15.7) and 37.2 (14.3) for boys and girls in all of Scotland. Graded relationships were found between mental ability in childhood, and social class and deprivation category of residence in adulthood. Being in a higher social class or in a more affluent deprivation category was associated with higher childhood mental ability scores and the scores reduced with increasing deprivation. Future plans for the matched data include examining associations between childhood mental ability and other childhood and adult risk factors for disease in adulthood, and modelling childhood mental ability, alongside other factors available in the Midspan database, as a risk factor for specific illnesses, admission to hospital and mortality
The EDA deficient mouse has Zymbal’s gland hypoplasia and acute otitis externa
In mice, rats, dogs and humans, the growth and function of sebaceous glands and eyelid Meibomian glands depend on the ectodysplasin signalling pathway. Mutation of genes encoding the ligand EDA, its transmembrane receptor EDAR and the intracellular signal transducer EDARADD leads to hypohidrotic ectodermal dysplasia, characterised by impaired development of teeth and hair, as well as cutaneous glands. The rodent ear canal has a large auditory sebaceous gland, the Zymbal's gland, the function of which in the health of the ear canal has not been determined. We report that EDA-deficient mice, EDAR-deficient mice and EDARADD-deficient rats have Zymbal's gland hypoplasia. EdaTa mice have 25% prevalence of otitis externa at postnatal day 21 and treatment with agonist anti-EDAR antibodies rescues Zymbal's glands. The aetiopathogenesis of otitis externa involves infection with Gram-positive cocci, and dosing pregnant and lactating EdaTa females and pups with enrofloxacin reduces the prevalence of otitis externa. We infer that the deficit of sebum is the principal factor in predisposition to bacterial infection, and the EdaTa mouse is a potentially useful microbial challenge model for human acute otitis externa
Electron energy loss and induced photon emission in photonic crystals
The interaction of a fast electron with a photonic crystal is investigated by
solving the Maxwell equations exactly for the external field provided by the
electron in the presence of the crystal. The energy loss is obtained from the
retarding force exerted on the electron by the induced electric field. The
features of the energy loss spectra are shown to be related to the photonic
band structure of the crystal. Two different regimes are discussed: for small
lattice constants relative to the wavelength of the associated electron
excitations , an effective medium theory can be used to describe the
material; however, for the photonic band structure plays an
important role. Special attention is paid to the frequency gap regions in the
latter case.Comment: 12 pages, 7 figure
The Determination of alpha_s from Tau Decays Revisited
We revisit the determination of alpha_s(m_tau) using a fit to inclusive tau
hadronic spectral moments in light of (1) the recent calculation of the
fourth-order perturbative coefficient K_4 in the expansion of the Adler
function, (2) new precision measurements from BABAR of e+e- annihilation cross
sections, which decrease the uncertainty in the separation of vector and
axial-vector spectral functions, and (3) improved results from BABAR and Belle
on tau branching fractions involving kaons. We estimate that the fourth-order
perturbative prediction reduces the theoretical uncertainty, introduced by the
truncation of the series, by 20% with respect to earlier determinations. We
discuss to some detail the perturbative prediction and show that the effect of
the incomplete knowledge of the series is reduced by using the so-called
contour-improved calculation, as opposed to fixed-order perturbation theory
which manifests convergence problems. The corresponding theoretical
uncertainties are studied at the tau and Z mass scales. Nonperturbative
contributions extracted from the most inclusive fit are small, in agreement
with earlier determinations. Systematic effects from quark-hadron duality
violation are estimated with simple models and found to be within the quoted
systematic errors. The fit gives alpha_s(m_tau) = 0.344 +- 0.005 +- 0.007,
where the first error is experimental and the second theoretical. After
evolution to M_Z we obtain alpha_s(M_Z) = 0.1212 +- 0.0005 +- 0.0008 +- 0.0005,
where the errors are respectively experimental, theoretical and due to the
evolution. The result is in agreement with the corresponding NNNLO value
derived from essentially the Z width in the global electroweak fit. The
alpha_s(M_Z) determination from tau decays is the most precise one to date.Comment: 22 pages, 7 figure
Review: The Newsletter of the Literary Managers and Dramaturgs of the Americas, volume 14, issue 1
Contents include: Far From Inundated, A Word form the President, BHAGS Words of Welcome, Remarks from Conference Co-Chair Ed Sobel, Keynote Speech Given by Chuck Smith Introduced by Michele Volansky, The Telephone Monologues: Five Monologues Written for the 2003 LMDA Conference introduced by Janet Allard, Telephone, Billy, The Visitors, A Drag Queen, Choice, Don\u27t Know Much About Holly-turgy Outline, Reflections on Conference 2003, Elect Better Actors, Neo-Romantic Manifesto, Pullet Surprise-Call for Nominations, and Regional News-Know Your Regional Vice Presidents.
Issue editors: D.J. Hopkins, Shelley Orr, Liz Engelman, Madeleine Oldham, Jacob Zimmerhttps://soundideas.pugetsound.edu/lmdareview/1028/thumbnail.jp
On the Behavior of the Effective QCD Coupling alpha_tau(s) at Low Scales
The hadronic decays of the tau lepton can be used to determine the effective
charge alpha_tau(m^2_tau') for a hypothetical tau-lepton with mass in the range
0 < m_tau' < m_tau. This definition provides a fundamental definition of the
QCD coupling at low mass scales. We study the behavior of alpha_tau at low mass
scales directly from first principles and without any renormalization-scheme
dependence by looking at the experimental data from the OPAL Collaboration. The
results are consistent with the freezing of the physical coupling at mass
scales s = m^2_tau' of order 1 GeV^2 with a magnitude alpha_tau ~ 0.9 +/- 0.1.Comment: 15 pages, 4 figures, submitted to Physical Review D, added
references, some text added, no results nor figures change
Dimensionless cosmology
Although it is well known that any consideration of the variations of
fundamental constants should be restricted to their dimensionless combinations,
the literature on variations of the gravitational constant is entirely
dimensionful. To illustrate applications of this to cosmology, we explicitly
give a dimensionless version of the parameters of the standard cosmological
model, and describe the physics of Big Bang Neucleosynthesis and recombination
in a dimensionless manner. The issue that appears to have been missed in many
studies is that in cosmology the strength of gravity is bound up in the
cosmological equations, and the epoch at which we live is a crucial part of the
model. We argue that it is useful to consider the hypothetical situation of
communicating with another civilization (with entirely different units),
comparing only dimensionless constants, in order to decide if we live in a
Universe governed by precisely the same physical laws. In this thought
experiment, we would also have to compare epochs, which can be defined by
giving the value of any {\it one} of the evolving cosmological parameters. By
setting things up carefully in this way one can avoid inconsistent results when
considering variable constants, caused by effectively fixing more than one
parameter today. We show examples of this effect by considering microwave
background anisotropies, being careful to maintain dimensionlessness
throughout. We present Fisher matrix calculations to estimate how well the fine
structure constants for electromagnetism and gravity can be determined with
future microwave background experiments. We highlight how one can be misled by
simply adding to the usual cosmological parameter set
Polarization transfer in wide-angle Compton scattering and single-pion photoproduction from the proton
Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θpcm=70°. The longitudinal transfer KLL, measured to be 0.645±0.059±0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ∼3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude
- …