211 research outputs found

    On the reheating stage after inflation

    Full text link
    We point out that inflaton decay products acquire plasma masses during the reheating phase following inflation. The plasma masses may render inflaton decay kinematicaly forbidden, causing the temperature to remain frozen for a period at a plateau value. We show that the final reheating temperature may be uniquely determined by the inflaton mass, and may not depend on its coupling. Our findings have important implications for the thermal production of dangerous relics during reheating (e.g., gravitinos), for extracting bounds on particle physics models of inflation from Cosmic Microwave Background anisotropy data, for the production of massive dark matter candidates during reheating, and for models of baryogenesis or leptogensis where massive particles are produced during reheating.Comment: 8 pages, 2 figures. Submitted for publication in Phys. Rev.

    Thermodynamic gauge-theory cascade

    Full text link
    It is proposed that the cooling of a thermalized SU(NN) gauge theory can be formulated in terms of a cascade involving three effective theories with successively reduced (and spontaneously broken) gauge symmetries, SU(NN) \to U(1)N1^{N-1} \to ZN_N. The approach is based on the assumption that away from a phase transition the bulk of the quantum interaction inherent to the system is implicitly encoded in the (incomplete) classical dynamics of a collective part made of low-energy condensed degrees of freedom. The properties of (some of the) statistically fluctuating fields are determined by these condensate(s). This leads to a quasi-particle description at tree-level. It appears that radiative corrections, which are sizable at large gauge coupling, do not change the tree-level picture qualitatively. The thermodynamic self-consistency of the quasi-particle approach implies nonperturbative evolution equations for the associated masses. The temperature dependence of these masses, in turn, determine the evolution of the gauge coupling(s). The hot gauge system approaches the behavior of an ideal gas of massless gluons at asymptotically large temperature. A negative equation of state is possible at a stage where the system is about to settle into the phase of the (spontaneously broken) ZN_N symmetry.Comment: 25 pages, 6 figures, 1 reference added, minor corrections in text, errors in Sec. 3.2 corrected, PRD versio

    Superheavy Dark Matter with Discrete Gauge Symmetries

    Get PDF
    We show that there are discrete gauge symmetries protect naturally heavy X particles from decaying into the ordinary light particles in the supersymmetric standard model. This makes the proposal very attractive that the superheavy X particles constitute a part of the dark matter in the present universe. It is more interesting that there are a class of discrete gauge symmetries which naturally accommodate a long-lived unstable X particle. We find that in some discrete Z_{10} models, for example, a superheavy X particle has lifetime \tau_X \simeq 10^{11}-10^{26} years for its mass M_X \simeq 10^{13}-10^{14} GeV. This long lifetime is guaranteed by the absence of lower dimensional operators (of light particles) couple to the X. We briefly discuss a possible explanation for the recently observed ultra-high-energy cosmic ray events by the decay of this unstable X particle.Comment: 9 pages, Late

    WIMP abundance and lepton (flavour) asymmetry

    Full text link
    We investigate how large lepton asymmetries affect the evolution of the early universe at times before big bang nucleosynthesis and in particular how they influence the relic density of WIMP dark matter. In comparison to the standard calculation of the relic WIMP abundance we find a decrease, depending on the lepton flavour asymmetry. We find an effect of up to 20 per cent for lepton flavour asymmetries lf=O(0.1)l_f= {\cal O}(0.1).Comment: 16 pages, 4 figures; v2:minor changes to some wording

    SuperWIMP Dark Matter Signals from the Early Universe

    Full text link
    Cold dark matter may be made of superweakly-interacting massive particles, superWIMPs, that naturally inherit the desired relic density from late decays of metastable WIMPs. Well-motivated examples are weak-scale gravitinos in supergravity and Kaluza-Klein gravitons from extra dimensions. These particles are impossible to detect in all dark matter experiments. We find, however, that superWIMP dark matter may be discovered through cosmological signatures from the early universe. In particular, superWIMP dark matter has observable consequences for Big Bang nucleosynthesis and the cosmic microwave background (CMB), and may explain the observed underabundance of 7Li without upsetting the concordance between deuterium and CMB baryometers. We discuss implications for future probes of CMB black body distortions and collider searches for new particles. In the course of this study, we also present a model-independent analysis of entropy production from late-decaying particles in light of WMAP data.Comment: 19 pages, 5 figures, typos correcte

    Effect of Weld Schedule on the Residual Stress Distribution of Boron Steel Spot Welds

    Get PDF
    Press-hardened boron steel has been utilized in anti-intrusion systems in automobiles, providing high strength and weight-saving potential through gage reduction. Boron steel spot welds exhibit a soft heat-affected zone which is surrounded by a hard nugget and outlying base material. This soft zone reduces the strength of the weld and makes it susceptible to failure. Additionally, different welding regimes lead to significantly different hardness distributions, making failure prediction difficult. Boron steel sheets, welded with fixed and adaptive schedules, were characterized. These are the first experimentally determined residual stress distributions for boron steel resistance spot welds which have been reported. Residual strains were measured using neutron diffraction, and the hardness distributions were measured on the same welds. Additionally, similar measurements were performed on spot welded DP600 steel as a reference material. A correspondence between residual stress and hardness profiles was observed for all welds. A significant difference in material properties was observed between the fixed schedule and adaptively welded boron steel samples, which could potentially lead to a difference in failure loads between the two boron steel welds

    Neutrino Interferometry In Curved Spacetime

    Get PDF
    Gravitational lensing introduces the possibility of multiple (macroscopic) paths from an astrophysical neutrino source to a detector. Such a multiplicity of paths can allow for quantum mechanical interference to take place that is qualitatively different to neutrino oscillations in flat space. After an illustrative example clarifying some under-appreciated subtleties of the phase calculation, we derive the form of the quantum mechanical phase for a neutrino mass eigenstate propagating non-radially through a Schwarzschild metric. We subsequently determine the form of the interference pattern seen at a detector. We show that the neutrino signal from a supernova could exhibit the interference effects we discuss were it lensed by an object in a suitable mass range. We finally conclude, however, that -- given current neutrino detector technology -- the probability of such lensing occurring for a (neutrino-detectable) supernova is tiny in the immediate future.Comment: 25 pages, 1 .eps figure. Updated version -- with simplified notation -- accepted for publication in Phys.Rev.D. Extra author adde

    Long Lived Superheavy Dark Matter with Discrete Gauge Symmetries

    Get PDF
    The recently observed ultra-high energy (UHE) cosmic rays beyond the Greisen-Zatsepin-Kuzmin bound can be explained by the decays of some superheavy XX particles forming a part of dark matter in our universe. We consider various discrete gauge symmetries ZN{\bf Z}_N to ensure the required long lifetime (τX10101022years\tau_X \simeq 10^{10}-10^{22} years) of the XX particle to explain the UHE cosmic rays in the minimal supersymmetric standard model (MSSM) with massive Majorana neutrinos. We show that there is no anomaly-free discrete gauge symmetry to make the lifetime of the XX particle sufficiently long in the MSSM with the XX particle. We find, however, possible solutions to this problem especially by enlarging the particle contents in the MSSM. We show a number of solutions introducing an extra pair of singlets YY and Yˉ\bar{Y} which have fractional ZN{\bf Z}_N (N=2,3) charges. The present experimental constraints on the XX particle are briefly discussed.Comment: 27 pages, Late

    Cosmology at the Millennium

    Get PDF
    One hundred years ago we did not know how stars generate energy, the age of the Universe was thought to be only millions of years, and our Milky Way galaxy was the only galaxy known. Today, we know that we live in an evolving and expanding Universe comprising billions of galaxies, all held together by dark matter. With the hot big-bang model, we can trace the evolution of the Universe from the hot soup of quarks and leptons that existed a fraction of a second after the beginning to the formation of galaxies a few billion years later, and finally to the Universe we see today 13 billion years after the big bang, with its clusters of galaxies, superclusters, voids, and great walls. The attractive force of gravity acting on tiny primeval inhomogeneities in the distribution of matter gave rise to all the structure seen today. A paradigm based upon deep connections between cosmology and elementary particle physics -- inflation + cold dark matter -- holds the promise of extending our understanding to an even more fundamental level and much earlier times, as well as shedding light on the unification of the forces and particles of nature. As we enter the 21st century, a flood of observations is testing this paradigm.Comment: 44 pages LaTeX with 14 eps figures. To be published in the Centennial Volume of Reviews of Modern Physic

    Radiative Decay of a Long-Lived Particle and Big-Bang Nucleosynthesis

    Full text link
    The effects of radiatively decaying, long-lived particles on big-bang nucleosynthesis (BBN) are discussed. If high-energy photons are emitted after BBN, they may change the abundances of the light elements through photodissociation processes, which may result in a significant discrepancy between the BBN theory and observation. We calculate the abundances of the light elements, including the effects of photodissociation induced by a radiatively decaying particle, but neglecting the hadronic branching ratio. Using these calculated abundances, we derive a constraint on such particles by comparing our theoretical results with observations. Taking into account the recent controversies regarding the observations of the light-element abundances, we derive constraints for various combinations of the measurements. We also discuss several models which predict such radiatively decaying particles, and we derive constraints on such models.Comment: Published version in Phys. Rev. D. Typos in figure captions correcte
    corecore