61 research outputs found

    Linear filtering precedes nonlinear processing in early vision

    Get PDF
    Background: Nonlinearities play a significant role in early visual processing. They are central to the perception of spatial contrast variations, multiplicative transparencies and texture boundaries. This article concerns the stage of processing at which nonlinearities first become significant. Results: Subjects were adapted to a high contrast sinusoidal grating followed by a brief presentation of a contrast modulated test (plaid) pattern. Thresholds for the detection of the contrast modulation (the beat) were measured. Results show that threshold elevation is greatest when the orientation and spatial frequency of the adapting grating are close to the principal Fourier frequency (the carrier) of the test pattern. Adaptation to sinewave-gratings near the frequency of the contrast modulation has relatively little effect. The data also show that the processing of contrast is frequency selective, with a peak tuning frequency near 0.4 cycles per degree. Conclusions: The data are consistent with a model in which the contrast beats are processed in a frequency- specific manner, after an initial stage of frequency-specific and orientation-specific linear filtering

    A numerical study of multi-soliton configurations in a doped antiferromagnetic Mott insulator

    Full text link
    We evaluate from first principles the self-consistent Hartree-Fock energies for multi-soliton configurations in a doped, spin-1/2, antiferromagnetic Mott insulator on a two-dimensional square lattice. We find that nearest-neighbor Coulomb repulsion stabilizes a regime of charged meron-antimeron vortex soliton pairs over a region of doping from 0.05 to 0.4 holes per site for intermediate coupling 3 < U/t <8. This stabilization is mediated through the generation of ``spin-flux'' in the mean-field antiferromagnetic (AFM) background. Holes cloaked by a meron-vortex in the spin-flux AFM background are charged bosons. Our static Hartree-Fock calculations provide an upper bound on the energy of a finite density of charged vortices. This upper bound is lower than the energy of the corresponding charged stripe configurations. A finite density of charge carrying vortices is shown to produce a large number of unoccupied electronic levels in the Mott-Hubbard charge transfer gap. These levels lead to significant band tailing and a broad mid-infrared band in the optical absorption spectrum as observed experimentally. At very low doping (below 0.05) the doping charges create extremely tightly bound meron-antimeron pairs or even isolated conventional spin-polarons, whereas for very high doping (above 0.4) the spin background itself becomes unstable to formation of a conventional Fermi liquid and the spin-flux mean-field is energetically unfavorable. Our results point to the predominance of a quantum liquid of charged, bosonic, vortex solitons at intermediate coupling and intermediate doping concentrations.Comment: 12 pages, 25 figures; added references, modified/eliminated some figure

    Variable-range hopping in quasi-one-dimensional electron crystals

    Full text link
    We study the effect of impurities on the ground state and the low-temperature dc transport in a 1D chain and quasi-1D systems of many parallel chains. We assume that strong interactions impose a short-range periodicicity of the electron positions. The long-range order of such an electron crystal (or equivalently, a 4kF4 k_F charge-density wave) is destroyed by impurities. The 3D array of chains behaves differently at large and at small impurity concentrations NN. At large NN, impurities divide the chains into metallic rods. The low-temperature conductivity is due to the variable-range hopping of electrons between the rods. It obeys the Efros-Shklovskii (ES) law and increases exponentially as NN decreases. When NN is small, the metallic-rod picture of the ground state survives only in the form of rare clusters of atypically short rods. They are the source of low-energy charge excitations. In the bulk the charge excitations are gapped and the electron crystal is pinned collectively. A strongly anisotropic screening of the Coulomb potential produces an unconventional linear in energy Coulomb gap and a new law of the variable-range hopping lnσ(T1/T)2/5-\ln\sigma \sim (T_1 / T)^{2/5}. T1T_1 remains constant over a finite range of impurity concentrations. At smaller NN the 2/5-law is replaced by the Mott law, where the conductivity gets suppressed as NN goes down. Thus, the overall dependence of σ\sigma on NN is nonmonotonic. In 1D, the granular-rod picture and the ES apply at all NN. The conductivity decreases exponentially with NN. Our theory provides a qualitative explanation for the transport in organic charge-density wave compounds.Comment: 20 pages, 7 figures. (v1) The abstract is abridged to 24 lines. For the full abstract, see the manuscript (v2) several changes in presentation per referee's comments. No change in result

    Inter-area correlations in the ventral visual pathway reflect feature integration

    Get PDF
    During object perception, the brain integrates simple features into representations of complex objects. A perceptual phenomenon known as visual crowding selectively interferes with this process. Here, we use crowding to characterize a neural correlate of feature integration. Cortical activity was measured with functional magnetic resonance imaging, simultaneously in multiple areas of the ventral visual pathway (V1-V4 and the visual word form area, VWFA, which responds preferentially to familiar letters), while human subjects viewed crowded and uncrowded letters. Temporal correlations between cortical areas were lower for crowded letters than for uncrowded letters, especially between V1 and VWFA. These differences in correlation were retinotopically specific, and persisted when attention was diverted from the letters. But correlation differences were not evident when we substituted the letters with grating patches that were not crowded under our stimulus conditions. We conclude that inter-area correlations reflect feature integration and are disrupted by crowding. We propose that crowding may perturb the transformations between neural representations along the ventral pathway that underlie the integration of features into objects

    Retinotopic Patterns of Correlated Fluctuations in Visual Cortex Reflect the Dynamics of Spontaneous Perceptual Suppression

    No full text
    While viewing certain stimuli, perception changes spontaneously in the face of constant input. For example, during "motion-induced blindness" (MIB), a small salient target spontaneously disappears and reappears when surrounded by a moving mask. Models of such bistable perceptual phenomena posit spontaneous fluctuations in neuronal activity throughout multiple stages of the visual cortical hierarchy. We used fMRI to link correlated activity fluctuations across human visual cortical areas V1 through V4 to the dynamics (rate and duration) of MIB target disappearance. We computed the correlations between the time series of fMRI activity in multiple retinotopic subregions corresponding to MIB target and mask. Linear decomposition of the matrix of temporal correlations revealed spatial patterns of activity fluctuations, regardless of whether or not these were time-locked to behavioral reports of target disappearance. The spatial pattern that dominated the activity fluctuations during MIB was spatially nonspecific, shared by all subregions, but did not reflect the dynamics of perception. By contrast, the fluctuations associated with the rate of MIB disappearance were retinotopically specific for the target subregion in V4, and the fluctuations associated with the duration of MIB disappearance states were target-specific in V1. Target-specific fluctuations in V1 have not previously been identified by averaging activity time-locked to behavioral reports of MIB disappearance. Our results suggest that different levels of the visual cortical hierarchy shape the dynamics of perception via distinct mechanisms, which are evident in distinct spatial patterns of spontaneous cortical activity fluctuations
    corecore