452 research outputs found
Race-time prediction for the Va’a paralympic sprint canoe
The 2016 Paralympic Games in Rio de Janeiro will see 200m sprint canoe events for the first time, using the Va’a class. The aim of this study is to predict race times for the Va’a over a 200m sprint event, through simulation of the hydrodynamic resistance of the hull (with outrigger) and the propulsion provided by the athlete. Such a simulation, once suitably validated, allows investigation of design and configuration changes on predicted race performance. The accuracy of the simulation is discussed through a comparison to times recorded for an athlete over a 200m race distanc
Modelling mucociliary clearance
Mathematical modelling of the fluid mechanics of mucociliary clearance (MCC) is reviewed and future challenges for researchers are discussed. The morphology of the bronchial and tracheal airway surface liquid (ASL) and ciliated epithelium are briefly introduced. The cilia beat cycle, beat frequency and metachronal coordination are described, along with the rheology of the mucous layer. Theoretical modelling of MCC from the late 1960s onwards is reviewed, and distinctions between ‘phenomenological’, ‘slender body theory’ and recent ‘fluid–structure interaction’ models are explained.\ud
\ud
The ASL consists of two layers, an overlying mucous layer and underlying watery periciliary layer (PCL) which bathes the cilia. Previous models have predicted very little transport of fluid in the PCL compared with the mucous layer. Fluorescent tracer transport experiments on human airway cultures conducted by Matsui et al. [Matsui, H., Randell, S.H., Peretti, S.W., Davis, C.W., Boucher, R.C., 1998. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102 (6), 1125–1131] apparently showed equal transport in both the PCL and mucous layer. Recent attempts to resolve this discrepancy by the present authors are reviewed, along with associated modelling findings. These findings have suggested new insights into the interaction of cilia with mucus due to pressure gradients associated with the flat PCL/mucus interface. This phenomenon complements previously known mechanisms for ciliary propulsion. Modelling results are related to clinical findings, in particular the increased MCC observed in patients with pseudohypoaldosteronism. Recent important advances by several groups in modelling the fluid–structure interaction by which the cilia movement and fluid transport emerge from specification of internal mechanics, viscous and elastic forces are reviewed. Finally, we discuss the limitations of existing work, and the challenges for the next generation of models, which may provide further insight into this complex and vital system
Generic flow profiles induced by a beating cilium
We describe a multipole expansion for the low Reynolds number fluid flows
generated by a localized source embedded in a plane with a no-slip boundary
condition. It contains 3 independent terms that fall quadratically with the
distance and 6 terms that fall with the third power. Within this framework we
discuss the flows induced by a beating cilium described in different ways: a
small particle circling on an elliptical trajectory, a thin rod and a general
ciliary beating pattern. We identify the flow modes present based on the
symmetry properties of the ciliary beat.Comment: 12 pages, 6 figures, to appear in EPJ
The sensitivity of BAO Dark Energy Constraints to General Isocurvature Perturbations
Baryon Acoustic Oscillation (BAO) surveys will be a leading method for
addressing the dark energy challenge in the next decade. We explore in detail
the effect of allowing for small amplitude admixtures of general isocurvature
perturbations in addition to the dominant adiabatic mode. We find that
non-adiabatic initial conditions leave the sound speed unchanged but instead
excite different harmonics. These harmonics couple differently to Silk damping,
altering the form and evolution of acoustic waves in the baryon-photon fluid
prior to decoupling. This modifies not only the scale on which the sound waves
imprint onto the baryon distribution, which is used as the standard ruler in
BAO surveys, but also the shape, width and height of the BAO peak. We discuss
these effects in detail and show how more general initial conditions impact our
interpretation of cosmological data in dark energy studies. We find that the
inclusion of these additional isocurvature modes leads to an increase in the
Dark Energy Task Force Figure of merit by 140% and 60% for the BOSS and ADEPT
experiments respectively when considered in conjunction with Planck data. We
also show that the incorrect assumption of adiabaticity has the potential to
bias our estimates of the dark energy parameters by () for a
single correlated isocurvature mode, and up to () for three
correlated isocurvature modes in the case of the BOSS (ADEPT) experiment. We
find that the use of the large scale structure data in conjunction with CMB
data improves our ability to measure the contributions of different modes to
the initial conditions by as much as 100% for certain modes in the fully
correlated case.Comment: 20 pages, 17 figure
Large-scale periodicity in the distribution of QSO absorption-line systems
The spatial-temporal distribution of absorption-line systems (ALSs) observed
in QSO spectra within the cosmological redshift interval z = 0.0--4.3 is
investigated on the base of our updated catalog of absorption systems. We
consider so called metallic systems including basically lines of heavy
elements. The sample of the data displays regular variations (with amplitudes ~
15 -- 20%) in the z-distribution of ALSs as well as in the eta-distribution,
where eta is a dimensionless line-of-sight comoving distance, relatively to
smoother dependences. The eta-distribution reveals the periodicity with period
Delta eta = 0.036 +/- 0.002, which corresponds to a spatial characteristic
scale (108 +/- 6) h(-1) Mpc or (alternatively) a temporal interval (350 +/- 20)
h(-1) Myr for the LambdaCDM cosmological model. We discuss a possibility of a
spatial interpretation of the results treating the pattern obtained as a trace
of an order imprinted on the galaxy clustering in the early Universe.Comment: AASTeX, 13 pages, with 9 figures, Accepted for publication in
Astrophysics & Space Scienc
Cosmokinetics: A joint analysis of Standard Candles, Rulers and Cosmic Clocks
We study the accelerated expansion of the universe by using the kinematic
approach. In this context, we parameterize the deceleration parameter, q(z), in
a model independent way. Assuming three simple parameterizations we reconstruct
q(z). We do the joint analysis with combination of latest cosmological data
consisting of standard candles (Supernovae Union2 sample), standard ruler
(CMB/BAO), cosmic clocks (age of passively evolving galaxies) and Hubble (H(z))
data. Our results support the accelerated expansion of the universe.Comment: PDFLatex, 15 pages, 12 pdf figures, revised version to appear in JCA
Effective swimming strategies in low Reynolds number flows
The optimal strategy for a microscopic swimmer to migrate across a linear
shear flow is discussed. The two cases, in which the swimmer is located at
large distance, and in the proximity of a solid wall, are taken into account.
It is shown that migration can be achieved by means of a combination of sailing
through the flow and swimming, where the swimming strokes are induced by the
external flow without need of internal energy sources or external drives. The
structural dynamics required for the swimmer to move in the desired direction
is discussed and two simple models, based respectively on the presence of an
elastic structure, and on an orientation dependent friction, to control the
deformations induced by the external flow, are analyzed. In all cases, the
deformation sequence is a generalization of the tank-treading motion regimes
observed in vesicles in shear flows. Analytic expressions for the migration
velocity as a function of the deformation pattern and amplitude are provided.
The effects of thermal fluctuations on propulsion have been discussed and the
possibility that noise be exploited to overcome the limitations imposed on the
microswimmer by the scallop theorem have been discussed.Comment: 14 pages, 5 figure
The origins and development of Zuwīla, Libyan Sahara: an archaeological and historical overview of an ancient oasis town and caravan centre
Zuwīla in southwestern Libya (Fazzān) was one of the most important early Islamic centres in the Central Sahara, but the archaeological correlates of the written sources for it have been little explored. This paper brings together for the first time a detailed consideration of the relevant historical and archaeological data, together with new AMS radiocarbon dates from several key monuments. The origins of the settlement at Zuwīla were pre-Islamic, but the town gained greater prominence in the early centuries of Arab rule of the Maghrib, culminating with the establishment of an Ibāḍī state ruled by the dynasty of the Banū Khaṭṭāb, with Zuwīla its capital. The historical sources and the accounts of early European travellers are discussed and archaeological work at Zuwīla is described (including the new radiocarbon dates). A short gazetteer of archaeological monuments is provided as an appendix. Comparisons and contrasts are also drawn between Zuwīla and other oases of the ash-Sharqiyāt region of Fazzān. The final section of the paper presents a series of models based on the available evidence, tracing the evolution and decline of this remarkable site
Hot Organic Chemistry in the Inner Part of Protoplanetary Disks
LPI Contribution No. 128
- …