37 research outputs found

    Observation of Events with an Energetic Forward Neutron in Deep Inelastic Scattering at HERA

    Get PDF
    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10-4 \u3c xBJ \u3c 6 · 10-3 and 10 \u3c Q2 \u3c 100 GeV2

    Complex (dusty) plasmas: Examples for applications and observation of magnetron-induced phenomena

    No full text
    Low-pressure plasmas offer a unique possibility of confinement, control, and fine tailoring of particle properties. Hence, dusty plasmas have grown into a vast field, and new applications of plasma-processed dust particles are emerging. During the deposition of thin amorphous films onto melamine formaldehyde (MF) microparticles in a C2H2 plasma, the generation of nanosized carbon particles was also studied. The size distribution of those particles is quite uniform. In another experiment, the stability of luminophore grains could be improved by coating with protective Al2O3 films that are deposited by a plasma-enhanced chemical vapor deposition (PECVD) process using a metal-organic precursor gas. Coating of SiO2 microparticles with thin metal layers by magnetron sputtering is also described. Especially the interaction of the microsized grains confined in a radio frequency (rf) plasma with the dc magnetron discharge during deposition was investigated. The observations emphasize that the interaction between magnetron plasma and injected microdisperse powder particles can also be used as a diagnostic tool for the characterization of magnetron sputter sources

    An efficient technique for the prediction of solvent-dependent morphology: the COSMIC method

    No full text
    We have developed a method of calculating the solvation energy of a surface based on an implicit solvent model. This new model called COSMIC, is an extension of the established COSMO solvation approach and allows the technique to be applied to systems of any periodicity from finite molecules, through polymers and surfaces, to cavities of water within a bulk unit cell. As well as extending the scope of the COSMO technique, it also improves the numerical stability through removal of anumber of discontinuities in the potential energy surface. The COSMIC model has been applied to barium sulfate, where it was found to produce similar surface energies and configurations to the much more computationally expensive explicit molecular dynamics simulations. The calculated solvated morphology of barium sulfate was found to differ significantly to that calculated in vacuum with a reduced number of faces present
    corecore