565 research outputs found

    Detecting 6 MV X-rays using an organic photovoltaic device

    Get PDF
    An organic photovoltaic (OPV) device has been used in conjunction with a flexible inorganic phosphor to produce a radiation tolerant, efficient and linear detector for 6 MV Xrays. The OPVs were based on a blend of poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM). We show that the devices have a sensitivity an order of magnitude higher than a commercial silicon detector used as a reference. Exposure to 360 Grays of radiation resulted in a small (2%) degradation in performance demonstrating that these detectors have the potential to be used as flexible, real-time, in vivo dosimeters for oncology treatments. (C) 2009 Elsevier B.V. All rights reserved

    Ancient Os isotope signatures from the Ontong Java Plateau lithosphere: Tracing lithospheric accretion history

    Get PDF
    In order to better understand the nature and formation of oceanic lithosphere beneath the Early Cretaceous Ontong Java Plateau, Re–Os isotopes have been analysed in a suite of peridotite xenoliths from Malaita, Solomon Islands. Geological, thermobarometric and petrological evidence from previous studies reveal that the xenoliths represent virtually the entire thickness of the southern part of subplateau lithospheric mantle (< 120 km). This study demonstrates that vertical Os isotopic variations correlate with compositional variations in a stratified lithosphere. The shallowest plateau lithosphere (< 85 km) is dominated by fertile lherzolites showing a restricted range of 187Os/188Os (0.1222 to 0.1288), consistent with an origin from ~ 160 Ma Pacific lithosphere. In contrast, the basal section of subplateau lithospheric mantle (~ 95–120 km) is enriched in refractory harzburgites with highly unradiogenic 187Os/188Os ratios ranging from 0.1152 to 0.1196, which yield Proterozoic model ages of 0.9–1.7 Ga. Although the whole range of Os isotope compositions of Malaita peridotites is within the variations seen in modern abyssal peridotites, the contrasting isotopic compositions of shallow and deep plateau lithosphere suggest their derivation from different mantle reservoirs. We propose that the subplateau lithosphere forms a genetically unrelated two-layered structure, comprising shallower, typical oceanic lithosphere underpinned by deeper impinged material, which included a component of recycled Proterozoic lithosphere. The impingement of residual but chemically heterogeneous mantle, mechanically coupled to the recently formed, thin lithosphere, may have a bearing on the anomalous initial uplift and late subsidence history of the seismically anomalous plateau root

    The transition zone as a host for recycled volatiles: Evidence from nitrogen and carbon isotopes in ultra-deep diamonds from Monastery and Jagersfontein (South Africa)

    Get PDF
    Sublithospheric (ultra-deep) diamonds provide a unique window into the deepest parts of Earth's mantle, which otherwise remain inaccessible. Here, we report the first combined C- and N-isotopic data for diamonds from the Monastery and Jagersfontein kimberlites that sample the deep asthenosphere and transition zone beneath the Kaapvaal Craton, in the mid Cretaceous, to investigate the nature of mantle fluids at these depths and the constraints they provide on the deep volatile cycle. Both diamond suites exhibit very light δ13C values (down to − 26‰) and heavy δ15N (up to + 10.3‰), with nitrogen abundances generally below 70 at. ppm but varying up to very high concentrations (2520 at. ppm) in rare cases. Combined, these signatures are consistent with derivation from subducted crustal materials. Both suites exhibit variable nitrogen aggregation states from 25 to 100% B defects. Internal growth structures, revealed in cathodoluminescence (CL) images, vary from faintly layered, through distinct cores to concentric growth patterns with intermittent evidence for dissolution and regular octahedral growth layers in places. Modelling the internal co-variations in δ13C-δ15N-N revealed that diamonds grew from diverse C-H-O-N fluids involving both oxidised and reduced carbon species. The diversity of the modelled diamond-forming fluids highlights the complexity of the volatile sources and the likely heterogeneity of the deep asthenosphere and transition zone. We propose that the Monastery and Jagersfontein diamonds form in subducted slabs, where carbon is converted into either oxidised or reduced species during fluid-aided dissolution of subducted carbon before being re-precipitated as diamond. The common occurrence of recycled C and N isotopic signatures in super-deep diamonds world-wide indicates that a significant amount of carbon and nitrogen is recycled back to the deep asthenosphere and transition zone via subducting slabs, and that the transition zone may be dominated by recycled C and N

    An X-ray scattering and electron microscopy study of methylammonium bismuth perovskites for solar cell applications

    Get PDF
    Photovoltaics made from organic–inorganic hybrid perovskite semiconductors are attracting significant interest due to their ability to harvest sunlight with remarkable efficiency. The presence of lead in the best performing devices raises concerns regarding their toxicity, a problem that may create barriers to commercialization. Hybrid perovskites with reduced lead content are being investigated to overcome this issue and here we evaluate bismuth as a possible lead substitute. For a series of hybrid perovskite films with the general composition CH3NH3(PbyBi1−y)I3−xClx, we characterize their optical and structural properties using UV–Vis spectroscopy, scanning electron microscopy and grazing incidence wide angle X-ray scattering. We show that they form crystalline structures with an optical band gap, around 2 eV for CH3NH3BiI3. However, preliminary solar cell tests show low power conversion efficiencies (<0.01%) due to both incomplete precursor conversion and material de-wetting from the substrate. The overall outcome is severely limited photocurrent. With current processing methods the general applicability of hybrid bismuth perovskites in photovoltaics may be limited

    Inter-element fractionation of highly siderophile elements in the Tonga Arc due to flux melting of a depleted source

    Get PDF
    Highly siderophile element concentrations (HSEs: Os, Ir, Ru, Pt, Pd, and Re) have been determined for a suite of fresh, submarine mafic lavas from the northern Tonga Arc front and the nascent backarc Fonualei Spreading Centre (FSC). Prior melt depletion of the Tongan mantle wedge combined with a high degree of fluid fluxed melting is thought to have produced boninitic magmas at several arc and FSC locations. As such, this arc system provides an opportunity to assess the fluid mobility of HSEs and to investigate the effects of fluid-induced melting and prior melt depletion on HSE behaviour during both mantle melting and magma evolution. Tongan lavas display extreme enrichment of Pt (2.5–32 ng/g) and Pd over Os (0.002–0.6 ng/g), Ir, and Ru, significantly greater than basalts from mid-ocean ridges. Magma evolution increases the degree of fractionation, resulting in the highest recorded Pt/Ru ratios (>300) in arc front samples with MgO <8 wt.%. This increasing fractionation is due to the mild incompatibility of Pt and Pd, and concurrent compatibility of Ru, during sulphide undersaturated magma evolution. However, the fractionation of Pt and Pd from Os, Ir, and Ru is observed in the highest MgO samples, indicating source inheritance. Prior melt depletion of the mantle and elevated oxygen fugacity both increase the likelihood of complete consumption of sulphide in the source during melting, which typically leads to melts with high concentrations of all the HSE. Indeed, modelling indicates that 25% aggregate partial melting of a depleted MORB-mantle source, proposed for the Tonga Arc, will lead to complete base-metal sulphide consumption unless there is considerable addition of S by the slab flux (at least 200 μg/g). Although source enrichment of Pt, Pd, and Re by slab fluids may take place, the fractionation of Pt and Pd from Os, Ir, and Ru can largely be explained by relatively low-temperature, yet high-degree, melting of fluid-fluxed melt-depleted mantle. The high Pt and Pd contents can be produced by the exhaustion of sulphide in the source, while the presence of Ru–Os–(Ir) alloys or sulphides (e.g. laurite) associated with Cr-spinel can explain Os, Ir, and Ru retention in the source residue. Such phases have been documented in fluid-fluxed sub-arc mantle from ophiolites. Osmium isotopes co-vary negatively with Os abundance and thus appear to be dominated by shallow level contamination. The most Os-rich samples, however, have 187Os/188Os ratios (0.126–0.132) which are typical of DMM and MORB, suggesting an indistinguishable flux of radiogenic Os from the slab. The significant fractionation of Pt and Re from Os in arc settings will lead, over time, to elevated 186Os and 187Os which may be relevant to the observed enrichments of these isotopes in some mantle regions. In addition, the differing behaviour of Ru and Ir, and the implication of a mantle source containing Ru-rich microphases, may have consequences for the estimation of the HSE composition of primitive upper mantle

    Osmium isotope compositions of detrital Os-rich alloys from the Rhine River provide evidence for a global late Mesoproterozoic mantle depletion event

    Get PDF
    We report osmium isotopic compositions for 297 mantle-derived detrital Ru–Os–Ir alloy grains found in gold and platinum-group mineral bearing placers of the Rhine River. These alloys were likely formed as a result of high degree melting in the convective mantle and derived from residual Paleozoic mantle peridotites in the Alps of Central Europe that were accreted as part of a collage of Gondwana-derived ‘Armorican’ terranes before the Variscan Orogeny. The 187Os/188Os isotope ratios of the Os-rich alloys show a wide distribution, with two modes at 0.1244 and 0.1205. These two modes correspond to rhenium depletion ages, interpreted to correspond with episodes of high-degree mantle melting, at ∼0.5 and ∼1.1 Ga. The data confirm the ability of the oceanic mantle to preserve evidence of ancient melting events. Our new data, in combination with published data on Os-rich alloys from the Urals and Tasmania and with data for abyssal peridotites, indicate a geographically widespread record of a major global Late Mesoproterozoic (1.0–1.2 Ga) high-degree melting event in Paleozoic oceanic mantle rocks. This model age peak is essentially absent from the crustal record of Central-Western Europe, but does coincide with the apparent peak in global continental crust zircon ages at this time. Thus, high-degree mantle melting peaking in the 1.0–1.2 Ga interval may have affected a large part of Earth's mantle. This interval occurred during a period of relative super-continental stability, which may have been accompanied in the oceanic realm by rapid seafloor spreading and extensive subduction, and by unusually high activity of mantle plumes forming two active mantle superswells

    Monitoring the Formation of a CH<inf>3</inf>NH<inf>3</inf>PbI<inf>3-</inf><inf>x</inf>Cl<inf>x</inf> Perovskite during Thermal Annealing Using X-Ray Scattering

    Get PDF
    Grazing incidence wide and small angle X-ray scattering (GIWAXS and GISAXS) measurements have been used to study the crystallization kinetics of the organolead halide perovskite CH3NH3PbI3-xClx during thermal annealing. In situ GIWAXS measurements recorded during annealing are used to characterize and quantify the transition from a crystalline precursor to the perovskite structure. In situ GISAXS measurements indicate an evolution of crystallite sizes during annealing, with the number of crystallites having sizes between 30 and 400 nm increasing through the annealing process. Using ex situ scanning electron microscopy, this evolution in length scales is confirmed and a concurrent increase in film surface coverage is observed, a parameter crucial for efficient solar cell performance. A series of photovoltaic devices are then fabricated in which perovskite films have been annealed for different times, and variations in device performance are explained on the basis of X-ray scattering measurements

    An Allergen Portrait Gallery: Representative Structures and an Overview of IgE Binding Surfaces

    Get PDF
    Recent progress in the biochemical classification and structural determination of allergens and allergen–antibody complexes has enhanced our understanding of the molecular determinants of allergenicity. Databases of allergens and their epitopes have facilitated the clustering of allergens according to their sequences and, more recently, their structures. Groups of similar sequences are identified for allergenic proteins from diverse sources, and all allergens are classified into a limited number of protein structural families. A gallery of experimental structures selected from the protein classes with the largest number of allergens demonstrate the structural diversity of the allergen universe. Further comparison of these structures and identification of areas that are different from innocuous proteins within the same protein family can be used to identify features specific to known allergens. Experimental and computational results related to the determination of IgE binding surfaces and methods to define allergen-specific motifs are highlighted

    Continent stabilisation by lateral accretion of subduction zone-processed depleted mantle residues; insights from Zealandia

    Get PDF
    To examine how the mantle lithosphere stabilises continents, we present a synthesis of the mantle beneath Zealandia in the SW Pacific Ocean. Zealandia, Earth's “8th continent”, occurs over 4.9 M km2 and comprises a fore-arc, arc and back-arc fragment rifted from the Australia–Antarctica Gondwana margin 85 Myr ago. The oldest extant crust is ∼500 Ma and the majority is Permian–Jurassic. Peridotitic rocks from most known locations reveal the underpinning mantle to comprise regional domains varying from refractory (Al2O3 &lt; 1 wt%, olivine Mg# &gt; 92, spinel Cr# up to 80, Pt/Ir &lt; 1) to moderately depleted (Al2O3 = 2–4 wt%, olivine Mg# ∼90.5, spinel Cr# &lt; ∼60). There is no systematic distribution of these domains relative to the former arc configuration and some refractory domains underlie crust that is largely devoid of magmatic rocks. Re-depletion Os model ages have no correlation with depletion indices but do have a distribution that is very similar to global convecting mantle. Whole rock, mineral and isotopic data are interpreted to show that the Zealandia mantle lithosphere was constructed from isotopically heterogeneous convecting mantle fragments swept into the sub-arc environment, amalgamated, and variably re-melted under low-P hydrous conditions. The paucity of mafic melt volumes in most of the overlying crust that could relate to the depleted domains requires melting to have been followed by lateral accretion either during subduction or slab rollback. Recent Australia–Pacific convergence has thickened portions of the Zealandia mantle to &gt;160 km. Zealandia shows that the generation of refractory and/or thick continental lithosphere is not restricted to the Archean. Since Archean cratons also commonly display crust–mantle age decoupling, contain spinel peridotites with extreme Cr# numbers that require low-P hydrous melting, and often have a paucity of mafic melts relative to the extreme depletion indicated by their peridotitic roots, they too may – in part – be compilations of peridotite shallowly melted and then laterally accreted at subduction margins
    corecore