11 research outputs found

    Interaction of picrotoxin with GABAA receptor channel-lining residues probed in cysteine mutants

    Get PDF
    We used the substituted-cysteine-accessibility method to identify the channel-lining residues in a region (257–261) near the putative cytoplasmic end of the M2 membrane-spanning segment of the rat gamma-aminobutyric acid type A (GABAA) receptor alpha 1 subunit. The residues alpha 1Val257 and alpha 1Thr261 were accessible to charged, sulfhydryl-specific reagents applied extracellularly in both the open and closed states. The accessibility of alpha 1V257C and alpha 1T261C in the closed state implies that the gate must be at least as close to the cytoplasmic end of the channel as alpha 1Val257. Also, the positively charged reagent methanethiosulfonate ethylammonium penetrated from the extracellular end of the channel to alpha 1T261C, with which it reacted, indicating that the anion-selectivity filter is closer to the cytoplasmic end of the channel than this residue is. Co-application of picrotoxin prevented the sulfhydryl reagents from reacting with alpha 1V257C but did not prevent reaction with the more extracellular residue alpha 1T261C. Picrotoxin protection of alpha 1V257C may be due to steric block by picrotoxin bound in the channel at the level of alpha 1Val257; however, if this protection is allosteric, it is not due to the induction of the resting closed state in which alpha 1V257C was accessible to sulfhydryl reagent

    Stereospecific requirement of cholesterol in the function of the serotonin1A receptor

    Get PDF
    The serotonin1A receptor is an important member of the G protein-coupled receptor (GPCR) family. It is involved in the generation and modulation of a variety of cognitive and behavioral functions and serves as a drug target. Previous work from our laboratory has established the sensitivity of the function of the serotonin1A receptor to membrane cholesterol. Solubilization of the hippocampal serotonin1A receptor utilizing the zwitterionic detergent CHAPS is accompanied by loss of cholesterol and results in reduction in specific ligand binding. Replenishment of cholesterol to solubilized membranes restores specific ligand binding to the receptor. We utilized this strategy of sterol replenishment of solubilized membranes to explore the stereospecific stringency of cholesterol for receptor function. We used two stereoisomers of cholesterol, ent-cholesterol (enantiomer of cholesterol) and epi-cholesterol (a diastereomer of cholesterol), for this purpose. Importantly, we show here that while ent-cholesterol could replace cholesterol in supporting receptor function, epi-cholesterol could not. These results imply that the requirement of membrane cholesterol for the serotonin1A receptor function is diastereospecific, yet not enantiospecific. Our results extend and help define specificity of the interaction of membrane cholesterol with the serotonin1A receptor, and represent the first report utilizing ent-cholesterol to examine stereospecificity of GPCR-cholesterol interaction. © 2013 Elsevier B.V.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-alcoholic Steatohepatitis

    No full text
    Incomplete understanding of how hepatosteatosis transitions to fibrotic non-alcoholic steatohepatitis (NASH) has limited therapeutic options. Two molecules that are elevated in hepatocytes in human NASH liver are cholesterol, whose mechanistic link to NASH remains incompletely understood, and TAZ, a transcriptional regulator that promotes fibrosis but whose mechanism of increase in NASH is unknown. We now show that increased hepatocyte cholesterol upregulates TAZ and promotes fibrotic NASH. ASTER-B/C-mediated internalization of plasma membrane cholesterol activates soluble adenylyl cyclase (sAC; ADCY10), triggering a calcium-RhoA-mediated pathway that suppresses \u3b2-TrCP/proteasome-mediated TAZ degradation. In mice fed with a cholesterol-rich NASH-inducing diet, hepatocyte-specific silencing of ASTER-B/C, sAC, or RhoA decreased TAZ and ameliorated fibrotic NASH. The cholesterol-TAZ pathway is present in primary human hepatocytes, and associations among liver cholesterol, TAZ, and RhoA in human NASH liver are consistent with the pathway. Thus, hepatocyte cholesterol contributes to fibrotic NASH by increasing TAZ, suggesting new targets for therapeutic intervention

    Organisational design elements and competencies for optimising the expertise of knowledge workers in a shared services centre

    No full text
    corecore