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The serotonin1A receptor is an importantmember of the G protein-coupled receptor (GPCR) family. It is involved
in the generation and modulation of a variety of cognitive and behavioral functions and serves as a drug target.
Previous work from our laboratory has established the sensitivity of the function of the serotonin1A receptor to
membrane cholesterol. Solubilization of the hippocampal serotonin1A receptor utilizing the zwitterionic deter-
gent CHAPS is accompanied by loss of cholesterol and results in reduction in specific ligand binding. Replenish-
ment of cholesterol to solubilized membranes restores specific ligand binding to the receptor. We utilized this
strategy of sterol replenishment of solubilizedmembranes to explore the stereospecific stringency of cholesterol
for receptor function. We used two stereoisomers of cholesterol, ent-cholesterol (enantiomer of cholesterol)
and epi-cholesterol (a diastereomer of cholesterol), for this purpose. Importantly, we show here that while
ent-cholesterol could replace cholesterol in supporting receptor function, epi-cholesterol could not. These results
imply that the requirement of membrane cholesterol for the serotonin1A receptor function is diastereospecific,
yet not enantiospecific. Our results extend and help define specificity of the interaction ofmembrane cholesterol
with the serotonin1A receptor, and represent the first report utilizing ent-cholesterol to examine stereospecificity
of GPCR-cholesterol interaction.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The G protein-coupled receptor (GPCR) superfamily comprises the
largest and most diverse group of proteins in mammals and is involved
in information transfer (signal transduction) from outside the cell to
the cellular interior [1–3]. GPCRs are typically seven transmembrane
domain proteins, regulate physiological responses to a diverse array of
stimuli, and mediate multiple physiological processes. Due to this rea-
son, GPCRs have emerged as major drug targets in all clinical areas [4].
It is estimated that ~50% of clinically prescribed drugs target GPCRs [5].

The serotonin1A (5-HT1A) receptor is a representative member of
the GPCR family and is implicated in the generation and modulation
of various cognitive, behavioral, and developmental functions [6–8].
ine-1A receptor; 8-OH-DPAT,
honinic acid; CHAPS, 3-[(3-
; DMPC, dimyristoyl-sn-glycero-
ent-cholesterol, enantiomer of
omer of cholesterol; GPCR, G
MβCD, methyl-β-cyclodextrin;
nyl fluoride; SM, solubilized

91 40 2716 0311.
.

ights reserved.
Ligands that bind to the serotonin1A receptor are reported to possess po-
tential therapeutic effects in anxiety or stress-related disorders [6]. As a
consequence, the serotonin1A receptor serves as an important target in
the development of therapeutic agents for neuropsychiatric disorders
such as anxiety and depression [9]. Since GPCRs are integral membrane
proteins withmultiple transmembrane passes, the interaction of GPCRs
with membrane lipids is an important determinant in their structure
and function [10–14]. In fact, an important feature observed in recently
solved high resolution crystal structures of GPCRs (such as rhodopsin
[15], β1-adrenergic receptor [16], β2-adrenergic receptor [17,18] and
A2A adenosine receptor [19]) is the close association of cholesterol
molecules to the receptor. Previous work from our laboratory has com-
prehensively demonstrated the requirement of membrane cholesterol
in the organization, dynamics, and function of the serotonin1A receptor
([20–22]; reviewed in Refs. [11,12,14]).

Cholesterol is an essential and representative membrane lipid in
higher eukaryotes and is crucial in membrane organization, dynamics,
function, and sorting [23,24]. A hallmark of membrane cholesterol is its
nonrandom distribution in domains (or pools) in biological and model
membranes [25–28]. These domains are believed to be crucial since
various cellular processes such as membrane sorting and trafficking
[29], signal transduction [30], and the entry of pathogens [31,32] have
been attributed to these types of domains. The role of cholesterol in
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Fig. 1. Chemical structures of (a) cholesterol, (b) ent-cholesterol and (c) epi-cholesterol.
Both ent-cholesterol and epi-cholesterol are stereoisomers of cholesterol. ent-Cholesterol
is the enantiomer of cholesterol. Enantiomers are non-superimposable mirror images of
one another. epi-Cholesterol, on the other hand, is a diastereomer and is not a mirror
image of cholesterol. ent-Cholesterol, but not epi-cholesterol, shares identical physico-
chemical properties with cholesterol. See text for more details.
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the function and organization of membrane proteins and receptors con-
stitutes an emerging and exciting area of research [10–14]. The detailed
mechanism underlying the effect of membrane cholesterol on the struc-
ture and function of membrane proteins and receptors is not clear and
appears to be complex [12,33,34]. A possible mechanism by which
membrane cholesterol has been proposed to modulate the function of
membrane receptors is by a direct (specific) interaction, which could
induce a conformational change in the receptor. An alternative mecha-
nism envisages an indirect way by altering the membrane physical
properties in which the receptor is embedded. Yet another possibility
could be a combination of both. A particular kind of proposed specific
interaction is based on the concept of “nonannular” binding sites of
membrane lipids in membrane proteins [34,35]. Nonannular sites are
characterized by lack of accessibility to the annular lipids, i.e., these
sites cannot be displaced by competition with annular lipids [36,37].

As mentioned above, earlier work from our laboratory has compre-
hensively demonstrated the requirement of membrane cholesterol
in the function of the serotonin1A receptor [11,12,14]. An important
aspect of our results is that the interaction between cholesterol and
the serotonin1A receptor was shown to be considerably stringent
since immediate biosynthetic precursors of cholesterol (differing with
cholesterol merely in a double bond) were not able to maintain recep-
tor function [21,38,39]. In order to further explore the degree of
structural (stereospecific) stringency necessary for the ligand binding
function of the serotonin1A receptor, we examined whether stereo-
isomers of cholesterol [enantiomer of cholesterol (ent-cholesterol), or
diastereomer of cholesterol (epi-cholesterol); see Fig. 1] could support
the ligand binding function of the receptor. We show that while ent-
cholesterol could replace cholesterol in supporting receptor function,
epi-cholesterol could not.

2. Materials and methods

2.1. Materials

CHAPS, cholesterol, MβCD, DMPC, DPH, EDTA, EGTA, MgCl2, MnCl2,
iodoacetamide, PEG, PMSF, serotonin, sucrose, polyethylenimine, so-
dium azide, and Tris were obtained from Sigma Chemical Co. (St.
Louis, MO). 3-Epicholesterol (5-cholesten-3α-ol), to be denoted as epi-
cholesterol, was obtained from Steraloids (Newport, RI). The enantiomer
of cholesterol (ent-cholesterol)was synthesized as previously described
[40,41]. BCA reagent for protein estimation was from Pierce (Rockford,
IL). [3H]8-OH-DPAT (sp. activity 106 Ci/mmol) was purchased from
DuPont New England Nuclear (Boston, MA). GF/B glass microfiber fil-
ters were from Whatman International (Kent, U.K.). All solvents used
were of analytical grade. All other chemicals used were of the highest
purity available. Water was purified through a Millipore (Bedford,
MA) Milli-Q system and used throughout. Fresh bovine brains were
obtained from a local slaughterhouse within 10 min of death and the
hippocampal region was carefully dissected out. The hippocampi were
immediately flash frozen in liquid nitrogen and stored at −70 °C till
further use.

2.2. Methods

2.2.1. Preparation of native hippocampal membranes
Native hippocampal membranes were prepared as described previ-

ously [42]. Bovine hippocampal tissue (~50 g) was homogenized as
10% (w/v) in a polytron homogenizer in 2.5 mM Tris, 0.32 M sucrose,
5 mM EDTA, 5 mM EGTA, 0.02% sodium azide, 0.24 mM PMSF, 10 mM
iodoacetamide, pH 7.4 buffer. The homogenate was centrifuged
at 900 ×g for 10 min at 4 °C. The resultant supernatant was filtered
through four layers of cheesecloth and centrifuged at 50,000 ×g
for 20 min at 4 °C. The pellet obtained was suspended in 10 vol. of
50 mM Tris, 1 mM EDTA, 0.24 mM PMSF, 10 mM iodoacetamide, pH
7.4 buffer using a hand-held Dounce homogenizer and centrifuged at
50,000 ×g for 20 min at 4 °C. This procedure was repeated until
the supernatant was clear. The final pellet (native hippocampal
membranes) was suspended in a minimum volume of 50 mM Tris, pH
7.4 (buffer A), homogenized using a hand-held Dounce homogenizer,
flash frozen in liquid nitrogen and stored at−70 °C. Protein concentra-
tion was assayed using the BCA reagent [43].

2.2.2. Solubilization of native membranes
Hippocampal membranes (HM) were solubilized as described

previously using the zwitterionic detergent CHAPS [44–46]. CHAPS-
solubilized membrane was precipitated using PEG in order to re-
move NaCl from the solubilized extract, since agonist binding of the
serotonin1A receptor is inhibited by NaCl [42]. This procedure also
removes detergent. The PEG-precipitated CHAPS-solubilized mem-
brane (referred to as solubilized membrane (SM)) was suspended in
buffer A and used immediately for sterol replenishment and radioligand
binding assays.

2.2.3. Sterol replenishment of solubilized membranes
Solubilized membranes were replenished with ent-cholesterol, epi-

cholesterol or cholesterol using water soluble complexes of MβCD and
the respective sterol. The complex was prepared by dissolving required
amounts of the sterol (ent-cholesterol, epi-cholesterol or cholesterol)
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andMβCD in a ratio of 1:10 (mol/mol) in buffer A by constant vortexing
at room temperature (~23 °C). Stock solutions (typically 2 mM of
ent-cholesterol, epi-cholesterol or cholesterol:20 mM MβCD) of this
complexwere freshly prepared prior to each experiment. Sterol replen-
ishments were carried out at a protein concentration of ~2 mg/ml by
incubating solubilized membranes with 1 mM sterol:10 mM MβCD
complex for 30 min in buffer A at 25 °C under constant shaking. Mem-
braneswere then spun down at 100,000×g for 1 h at 4 °C, suspended in
the same buffer, and immediately used for radioligand binding assays.

2.2.4. Radioligand binding assays
Receptor binding assays were carried out as described earlier [20]

with some modifications. Tubes in duplicate with ~0.8 mg protein in a
total volume of 1 ml of 50 mM Tris, 1 mM EDTA, 10 mMMgCl2, 5 mM
MnCl2, pH 7.4 buffer were incubated with the radiolabeled agonist
[3H]8-OH-DPAT (final concentration in assay tube being 0.29 nM)
for 1 h at 25 °C. Nonspecific binding was determined by performing
the assay in the presence of 10 μM serotonin. The binding reaction
was terminated by rapid filtration under vacuum in a Millipore
multiport filtration apparatus throughWhatman GF/B 2.5 cm diameter
glass microfiber filters (1.0 μm pore size), which were presoaked in
0.15% polyethylenimine for 1 h [47]. Filters were then washed three
times with 3 ml of cold water (4 °C) dried, and the retained radioactiv-
ity wasmeasured in a Packard Tri-Carb 1500 liquid scintillation counter
using 5 ml of scintillation fluid.

2.2.5. Estimation of inorganic phosphate
The concentration of lipid phosphatewas determined subsequent to

total digestion by perchloric acid [48] usingNa2HPO4 as standard. DMPC
was used as an internal standard to assess lipid digestion. Sampleswith-
out perchloric acid digestion produced negligible readings.

2.2.6. Fluorescence anisotropy measurements
Fluorescence anisotropy experiments were carried out using the

fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) as described
previously [49]. Steady state fluorescence was measured in a Hitachi
F-4010 spectrofluorometer using 1 cm path length quartz cuvettes
at room temperature (~23 °C). Excitation and emission wavelengths
were set at 358 and 430 nm. Excitation and emission slits with
bandpasses of 1.5 and 20 nmwere used. The optical density of the sam-
ples measured at 358 nm was always less than 0.15. Fluorescence an-
isotropy measurements were performed using a Hitachi polarization
accessory. Anisotropy (r) valueswere calculated from the equation [50]:

r ¼ IVV−GIVH
IVV þ 2GIVH

where IVV and IVH are the measured fluorescence intensities (after ap-
propriate background subtraction) with the excitation polarizer verti-
cally oriented and the emission polarizer vertically and horizontally
oriented, respectively. G is the grating correction factor and is the ratio
of the efficiencies of the detection system for vertically and horizontally
polarized light and is equal to IHV/IHH. All experiments were done with
multiple sets of samples and average values of fluorescence anisotropy
are shown in Fig. 3.

2.2.7. Statistical analysis
Significance levels were estimated using Student's two-tailed un-

paired t-test using Graphpad Prism software version 4.0 (SanDiego, CA).

3. Results and discussion

The enantiomer of cholesterol (ent-cholesterol) is the non-
superimposable mirror image of native (natural) cholesterol (see
Fig. 1b). Enantiomers have identical physicochemical properties
(except for the direction of rotation of plane-polarized light). As a
consequence, the membrane biophysical properties (such as compress-
ibility and phase behavior) remain the same when native cholesterol
is replaced with ent-cholesterol [40,51–53]. In addition, both native
cholesterol and ent-cholesterol support normal growth of a mutant
mammalian cell line [54]. ent-Cholesterol is often utilized to distinguish
specific interaction of cholesterol from nonspecific effects [53,55–57].
epi-Cholesterol is a diastereomer of cholesterol in which only the
orientation of the hydroxyl group at carbon-3 is inverted relative to
native cholesterol (Fig. 1c). Previous studies have shown that the
biophysical properties of epi-cholesterol and native cholesterol are
different in membranes [40,53 and references therein]. For example,
epi-cholesterol and native cholesterol have been reported to differ in
their tilt angles, condensing ability, and phase transition properties in
membranes [58–61].

Purified membrane proteins are ideally suited for studying lipid–
protein interactions. However, purification of membrane proteins
poses a considerable challenge. A necessary criterion for purification of
an integral membrane protein is that the protein must be carefully
removed from the native membrane and dispersed in solution. This
process, termed solubilization, ismost efficiently accomplished utilizing
amphiphilic detergents [62,63]. In this process, proteins and lipids held
together in native membranes are dissociated in the presence of a suit-
able detergent. This results in the formation of small protein and lipid
clusters that remain dissolved (solubilized) in the aqueous solution. In
our previous work, we partially purified the hippocampal serotonin1A
receptor by solubilizing the receptor in a functionally active form
using CHAPS, a synthetic zwitterionic detergent, which is mild and
non-denaturing [44,64]. The solubilization conditions were highly opti-
mized so as to prevent dissociation and depletion of trimeric G-proteins,
which could result from high concentrations of CHAPS [65,66], and
therefore helpful in effectively solubilizing GPCRs in a functionally ac-
tive form. Hippocampal membranes, solubilized this way, contain the
serotonin1A receptor in a relatively pure (enriched) form. Interestingly,
it has been previously shown by us [67] and others [68] that solubiliza-
tion of the serotonin1A receptor by CHAPS leads to a reduction in mem-
brane cholesterol and specific ligand binding to the receptor. More
importantly, we previously demonstrated that upon replenishment
of solubilized membranes with cholesterol, specific ligand binding
of the serotonin1A receptor could be restored [67]. In this paper, we
utilized this strategy of sterol replenishment to the solubilized receptor
to explore the stereospecific stringency of cholesterol for receptor
function utilizing stereoisomers of cholesterol (ent-cholesterol and
epi-cholesterol).

Fig. 2 shows specific binding of the agonist [3H]8-OH-DPAT to
serotonin1A receptors in solubilized hippocampal membranes, and upon
replenishment of solubilized membranes with either epi-cholesterol or
cholesterol. Specific [3H]8-OH-DPAT binding to native hippocampal
membranes served as a control for these experiments. The figure
shows that the specific [3H]8-OH-DPAT binding to the serotonin1A
receptor is reduced upon solubilization to ~55% of the control (native
membranes).We attribute this reduction in binding to the loss of mem-
brane cholesterol accompanying solubilization [67]. Subsequent treat-
ment of solubilized membranes with MβCD-cholesterol complex led
to considerable recovery (~82%) of specific [3H]8-OH-DPAT binding,
due to replenishment of cholesterol. Interestingly, replenishment of sol-
ubilizedmembranes with epi-cholesterol could not restore specific [3H]
8-OH-DPAT binding to the receptor and remained at ~41% relative to
control (native membranes). These results show that epi-cholesterol
is unable to support the ligand binding function of the serotonin1A

receptor.
In order to explore the enantioselectivity of cholesterol in its inter-

action with the serotonin1A receptor, we carried out replenishment
of solubilized membranes with ent-cholesterol. As mentioned earlier,
ent-cholesterol is often utilized to distinguish specific interaction of
cholesterol from nonspecific effects [40,53,55–57]. The effect of replen-
ishment of solubilized membranes with ent-cholesterol is shown in
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Fig. 2. Interestingly, replenishment with ent-cholesterol resulted in
recovery of specific [3H]8-OH-DPAT binding to ~75% of native mem-
branes, comparable to that of cholesterol-replenished membranes
(Fig. 2). Taken together, these results suggest that the requirement
of membrane cholesterol for the serotonin1A receptor function is
diastereospecific, but not enantiospecific.

The above difference between epi-cholesterol and ent-cholesterol in
their ability to restore specific ligand binding to the serotonin1A recep-
tor, in principle, could be due to a change in membrane order. In order
to examine this possibility, we carried out fluorescence anisotropymea-
surements with the membrane probe DPH. DPH is a rod-like molecule
and partitions into the interior of the membrane. The membrane
partitioning of DPH has previously been shown to be independent
of the phase state of the membrane [69]. Fluorescence anisotropy is
correlated to the rotational diffusion of membrane embedded probes
such as DPH [50], which is sensitive to the packing of lipid acyl chains.
Fig. 3 shows that the fluorescence anisotropy of DPH exhibits a signifi-
cant reduction upon solubilization. Upon replenishment of solubilized
membranes with ent-cholesterol, epi-cholesterol or cholesterol, fluores-
cence anisotropy was found to increase and to be similar to that of
native (control) membranes in all cases.

epi-Cholesterol has been earlier reported to differwith cholesterol in
several biophysical properties [40,58–61]. However, our results show
that the overall membrane order of hippocampal membranes, moni-
tored by fluorescence anisotropy of DPH, is more or less invariant,
irrespective of whether the sterol in the membrane is cholesterol or
epi-cholesterol (Fig. 3). A possible reason for this could be that previous
work on biophysical properties of epi-cholesterol was carried out in
binarymixtures of lipids in model membranes where the consequences
of stereospecific sterol–lipid interactions are readily observable due
to membrane homogeneity. In contrast, we used hippocampal mem-
branes of neuronal origin which have a complex lipid composition
[70] that could mask stereospecific sterol–lipid interactions. Similar re-
sults were observed upon replenishment of HEK-293 cell membranes
with epi-cholesterol following cholesterol depletion [71]. In addition,
the same authors reported that specific ligand binding to the oxytocin
receptor (the specific requirement of membrane cholesterol for the
function of this GPCR has been demonstrated [71]) exhibits significant
reduction upon replacement of cholesterol with epi-cholesterol. Taken
together, our present resultswith the serotonin1A receptor and previous
results of Gimpl et al. with the oxytocin receptor [71] point to the strin-
gent requirement of cholesterol structure (the equatorial orientation
of the 3-hydroxyl group in particular) in the function of these impor-
tant GPCRs.

The selectivity of natural cholesterol and its enantiomer on the func-
tion of several peptides and proteins such as gramicidin ion channel
[55], nicotinic acetylcholine receptor [72], epidermal growth factor re-
ceptor [51], inward rectifier K+ channel [56], and the sterol regulatory
element-binding protein [57] have been previously studied. In addition,
the stereospecific requirement of cholesterol for bacterial toxins such
as Vibrio cholerae cytolysin and streptococcal streptolysin O [73], a
polyene antibiotic amphotericin B [55,74] and the growth, behavior
and viability of Caenorhabditis elegans [75] have been studied utilizing
ent-cholesterol. Interestingly, requirement of cholesterol has been re-
ported to be enantioselective in the case of inward rectifier K+ channel
[56], V. cholerae cytolysin [73], amphotericin B [74] and C. elegans [75].
On the other hand, it was reported that the effect of cholesterol on the
protein function is not enantioselective for proteins such as the nicotinic
acetylcholine receptor [72], epidermal growth factor receptor [51],
streptococcal streptolysin O [73], and the sterol regulatory element-
binding protein [57]. In these cases, ent-cholesterol has been particu-
larly utilized to differentiate the specific and general role of cholesterol
in the protein function, solely on the expectation that a specific protein
binding site for cholesterol will be geometrically stringent enough to
differentiate between enantiomers. This stringency of interaction re-
quiresmore than two specific interactions between the ligand and its re-
ceptor [40,53]. A possibility of a non-enantioselective pattern of binding
in a non-geometrically constrained protein cleft (such as a nonannular
lipid binding site, as discussed above) could therefore explain our results
and is consistent with what has been proposed previously [40,53]. It is
therefore prudent to be cognizant of this alternative explanation when
interpreting a finding of lack of enantioselectivity.

In conclusion, our results show that ent-cholesterol, but not epi-
cholesterol, could replace cholesterol in supporting the function of the
serotonin1A receptor (see Fig. 4), although the overall membrane order
appears to be comparable in all cases. These results therefore show

image of Fig.�3
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support the function of the receptor. See text for more details.
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that the requirement of membrane cholesterol for the serotonin1A

receptor function is diastereospecific, but not enantiospecific. We have
previously shown that immediate biosynthetic precursors of choles-
terol, differing with cholesterol in merely a double bond, were not
able to support the function of the serotonin1A receptor [21,38,39,45].
In addition, we have shown that the serotonin1A receptor is more com-
pact [76] and stable [49] in the presence of membrane cholesterol. We
have very recently shown by coarse-grain molecular dynamics simula-
tion that membrane cholesterol binds preferentially to certain sites
on the receptor [77]. A prominent site among these is the cholesterol
recognition/interaction amino acid consensus (CRAC) motif, recently
identified by us in GPCRs [78].

We show here that a key structural feature of cholesterol for its
ability to affect the function of the serotonin1A receptor is the equatorial
configuration of the 3-hydroxyl group. epi-Cholesterol, differing with
cholesterol solely in the axial orientation of the 3-hydroxyl group,
could not support receptor function, whereas ent-cholesterol which
maintains the 3-hydroxy group in the equatorial configuration supports
receptor function. Our present results therefore further extend the de-
gree of specificity of the interaction between the serotonin1A receptor
and membrane cholesterol. Yet, these results show that this specificity
of interaction falls short of achieving enantioselectivity. We conclude
that membrane lipid interactions of GPCRs could be of varying specific-
ity and envisage that this type of regulated specificity affects the efficacy
of the receptor–ligand interaction and is physiologically important. To
the best of our knowledge, our results constitute thefirst report utilizing
ent-cholesterol to explore the stereospecific requirement of cholesterol
for GPCR function.
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