29 research outputs found

    Strangeness Production and Ultrarelativistic Cascades

    Get PDF
    A two phase cascade, LUCIFER II, developed for the treatment of ultra high energy ion-ion collisions is applied to the production of strangeness at SPS energies s=17−20\sqrt{s}=17-20. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons, including strange mesons, by separating the dynamics into two steps, a fast cascade involving only nucleons in the original colliding relativistic ions followed, after an appropriate delay, by multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy ion experiments at the CERN SPS. A byproduct, obtained here in preliminary calculations, is a description of strangeness production in the collision of massive ions.Comment: 10 pages, 5 figure

    The H-Dibaryon and the Hard Core

    Full text link
    The H dibaryon, a single, triply magic bag containing two up, two down and two strange quarks, has long been sought after in a variety of experiments. Its creation has been attempted in K−K^-, proton and most recently in relativistic heavy ion induced reactions. We concentrate on the latter, but our conclusions are more generally applicable. The two baryons coalescing to form the single dibaryon, likely ΛΛ\Lambda \Lambda in the case of heavy ions, must penetrate the short range repulsive barrier which is expected to exist between them. We find that this barrier can profoundly affect the probability of producing the H state, should it actually exist.Comment: 9 pages including 4 figure

    J/Psi Suppression in Heavy Ion Collisions at the CERN SPS

    Full text link
    We reexamine the production of J/Psi and other charmonium states for a variety of target-projectile choices at the SPS. For this study we use a newly constructed cascade code LUCIFER II, which yields acceptable descriptions of both hard and soft processes, specifically Drell-Yan and hidden charm production, and soft energy loss and meson production, at the SPS. Glauber calculations of other authors are redone, and compared directly to the cascade results. The modeling of the charmonium states differs from that of earlier workers in its unified treatment of the hidden charm meson spectrum, which is introduced from the outset as a set of coupled states. The result is a description of the NA38 and NA50 data in terms of a conventional hadronic picture. The apparently anomalous suppression found in the most massive Pb+Pb system arises from three sources: destruction in the initial nucleon-nucleon cascade, use of coupled channels to exploit the larger breakup in the less bound Chi and Psi' states, and comover interaction in the final low energy phase.Comment: 36 pages (15 figures

    Large scale shell model calculations for odd-odd 58−62^{58-62}Mn isotopes

    Full text link
    Large scale shell model calculations have been carried out for odd-odd 58−62^{58-62}Mn isotopes in two different model spaces. First set of calculations have been carried out in full fp\it{fp} shell valence space with two recently derived fp\it{fp} shell interactions namely GXPF1A and KB3G treating 40^{40}Ca as core. The second set of calculations have been performed in fpg9/2{fpg_{9/2}} valence space with the fpgfpg interaction treating 48^{48}Ca as core and imposing a truncation by allowing up to a total of six particle excitations from the 0f7/2_{7/2} orbital to the upper fp\it{fp} orbitals for protons and from the upper fp\it{fp} orbitals to the 0g9/2_{9/2} orbital for neutron. For low-lying states in 58^{58}Mn, the KB3G and GXPF1A both predicts good results and for 60^{60}Mn, KB3G is much better than GXPF1A. For negative parity and high-spin positive parity states in both isotopes fpgfpg interaction is required. Experimental data on 62^{62}Mn is sparse and therefore it is not possible to make any definite conclusions. More experimental data on negative parity states is needed to ascertain the importance of 0g9/2_{9/2} and higher orbitals in neutron rich Mn isotopes.Comment: 5 pages, 4 figures, Submitted to Eur. Phys. J.

    Nuclear and nucleon transitions of the H di-baryon

    Full text link
    We consider 3 types of processes pertinent to the phenomenology of an H di-baryon: conversion of two Λ\Lambda's in a doubly-strange hypernucleus to an H, decay of the H to two baryons, and -- if the H is light enough -- conversion of two nucleons in a nucleus to an H. We compute the spatial wavefunction overlap using the Isgur-Karl and Bethe-Goldstone wavefunctions, and treat the weak interactions phenomenologically. The observation of Λ\Lambda decays from doubly-strange hypernuclei puts a constraint on the H wavefunction which is plausibly satisfied. In this case the H is very long-lived as we calculate. An absolutely stable H is not excluded at present. SuperK can provide valuable limits

    Resonant State in Helium-4 Lambda

    Full text link
    In a recent experiment E906 at the BNL-AGS, a search for light S=-2 hypernuclei, strong evidence was found for the nuclide Hydrogen-4 double Lambda. One of the most striking components of this data was the appearance of a narrow low-momentum pi- line at k(pi-) = 104-105 MeV/c. This was ascribed to the decay of Hydrogen-4 double Lambda into a resonant state in Helium-4 Lambda. The existence of such a state is shown to be plausible and its characteristics are delineated.Comment: 4 pages, 1 figur

    The effect of finite-range interactions in classical transport theory

    Get PDF
    The effect of scattering with non-zero impact parameters between consituents in relativistic heavy ion collisions is investigated. In solving the relativistic Boltzmann equation, the characteristic range of the collision kernel is varied from approximately one fm to zero while leaving the mean-free path unchanged. Modifying this range is shown to significantly affect spectra and flow observables. The finite range is shown to provide effective viscosities, shear, bulk viscosity and heat conductivity, with the viscous coefficients being proportional to the square of the interaction range

    The Importance of Time Congruity in the Organisation.

    Get PDF
    In 1991 Kaufman, Lane, and Lindquist proposed that time congruity in terms of an individual's time preferences and the time use methods of an organisation would lead to satisfactory performance and enhancement of quality of work and general life. The research reported here presents a study which uses commensurate person and job measures of time personality in an organisational setting to assess the effects of time congruity on one aspect of work life, job-related affective well-being. Results show that time personality and time congruity were found to have direct effects on well-being and the influence of time congruity was found to be mediated through time personality, thus contributing to the person–job (P–J) fit literature which suggests that direct effects are often more important than indirect effects. The study also provides some practical examples of ways to address some of the previously cited methodological issues in P–J fit research

    J/psi production in relativistic heavy ion collisions from a multi-phase transport model

    Full text link
    Using A Multi-Phase Transport (AMPT) model, we study J/psi production from interactions between charm and anti-charm quarks in initial parton phase and between D and Dbar mesons in final hadron phase of relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC). Including also the inverse reactions of J/psi absorption by gluons and light mesons, we find that the net number of J/psi from the parton and hadron phases is smaller than that expected from the superposition of initial nucleon-nucleon collisions, contrary to the J/psi enhancement predicted by the kinetic formation model. The production of J/psi is further suppressed if one includes the color screening effect in the parton phase. We have also studied the dependence of J/psi production on the charm quark mass and the effective charm meson mass.Comment: Figures redone with better statistic
    corecore