9 research outputs found
More on Tachyon Cosmology in De Sitter Gravity
We aim to study rolling tachyon cosmological solutions in de Sitter gravity.
The solutions are taken to be flat FRW type and these are not time-reversal
symmetric. We find that cosmological constant of our universe has to be
fine-tuned at the level of the action itself, as in KKLT string
compactification. The rolling tachyon can give rise to required inflation with
suitable choice of the initial conditions which include nonvanishing Hubble
constant. We also determine an upper bound on the volume of the
compactification manifold.Comment: 15pp, 3 figures; references adde
Cosmic microwave background anisotropies in multi-connected flat spaces
This article investigates the signature of the seventeen multi-connected flat
spaces in cosmic microwave background (CMB) maps. For each such space it
recalls a fundamental domain and a set of generating matrices, and then goes on
to find an orthonormal basis for the set of eigenmodes of the Laplace operator
on that space. The basis eigenmodes are expressed as linear combinations of
eigenmodes of the simply connected Euclidean space. A preceding work, which
provides a general method for implementing multi-connected topologies in
standard CMB codes, is then applied to simulate CMB maps and angular power
spectra for each space. Unlike in the 3-torus, the results in most
multi-connected flat spaces depend on the location of the observer. This effect
is discussed in detail. In particular, it is shown that the correlated circles
on a CMB map are generically not back-to-back, so that negative search of
back-to-back circles in the WMAP data does not exclude a vast majority of flat
or nearly flat topologies.Comment: 33 pages, 19 figures, 1 table. Submitted to PR
Indirect search for dark matter: prospects for GLAST
Possible indirect detection of neutralino, through its gamma-ray annihilation
product, by the forthcoming GLAST satellite from our galactic halo, M31, M87
and the dwarf galaxies Draco and Sagittarius is studied. Gamma-ray fluxes are
evaluated for the two representative energy thresholds, 0.1 GeV and 1.0 GeV, at
which the spatial resolution of GLAST varies considerably. Apart from dwarfs
which are described either by a modified Plummer profile or by a
tidally-truncated King profiles, fluxes are compared for halos with central
cusps and cores. It is demonstrated that substructures, irrespective of their
profiles, enhance the gamma-ray emission only marginally. The expected
gamma-ray intensity above 1 GeV at high galactic latitudes is consistent with
the residual emission derived from EGRET data if the density profile has a
central core and the neutralino mass is less than 50 GeV, whereas for a central
cusp only a substantial enhancement would explain the observations. From M31,
the flux can be detected above 0.1 GeV and 1.0 GeV by GLAST only if the
neutralino mass is below 300 GeV and if the density profile has a central cusp,
case in which a significant boost in the gamma-ray emission is produced by the
central black hole. For Sagittarius, the flux above 0.1 GeV is detectable by
GLAST provided the neutralino mass is below 50 GeV. From M87 and Draco the
fluxes are always below the sensitivity limit of GLAST.Comment: 14 Pages, 7 Figures, 3 Tables, version to appear on Physical Review
Constraining Strong Baryon-Dark Matter Interactions with Primordial Nucleosynthesis and Cosmic Rays
Self-interacting dark matter (SIDM) was introduced by Spergel & Steinhardt to
address possible discrepancies between collisionless dark matter simulations
and observations on scales of less than 1 Mpc. We examine the case in which
dark matter particles not only have strong self-interactions but also have
strong interactions with baryons. The presence of such interactions will have
direct implications for nuclear and particle astrophysics. Among these are a
change in the predicted abundances from big bang nucleosynthesis (BBN) and the
flux of gamma-rays produced by the decay of neutral pions which originate in
collisions between dark matter and Galactic cosmic rays (CR). From these
effects we constrain the strength of the baryon--dark matter interactions
through the ratio of baryon - dark matter interaction cross section to dark
matter mass, . We find that BBN places a weak upper limit to this ratio . CR-SIDM interactions, however, limit the possible DM-baryon cross
section to ; this rules out an energy-independent
interaction, but not one which falls with center-of-mass velocity as or steeper.Comment: 17 pages, 2 figures; plain LaTeX. To appear in PR
Phenomenology of the Lense-Thirring effect in the Solar System
Recent years have seen increasing efforts to directly measure some aspects of
the general relativistic gravitomagnetic interaction in several astronomical
scenarios in the solar system. After briefly overviewing the concept of
gravitomagnetism from a theoretical point of view, we review the performed or
proposed attempts to detect the Lense-Thirring effect affecting the orbital
motions of natural and artificial bodies in the gravitational fields of the
Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of
the impact of several sources of systematic uncertainties of dynamical origin
to realistically elucidate the present and future perspectives in directly
measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in
Astrophysics and Space Science (ApSS). Some uncited references in the text
now correctly quoted. One reference added. A footnote adde
A cyclic universe with colour fields
The topology of the universe is discussed in relation to the singularity
problem. We explore the possibility that the initial state of the universe
might have had a structure with 3-Klein bottle topology, which would lead to a
model of a nonsingular oscillating (cyclic) universe with a well-defined
boundary condition. The same topology is assumed to be intrinsic to the nature
of the hypothetical primitive constituents of matter (usually called preons)
giving rise to the observed variety of elementary particles. Some
phenomenological implications of this approach are also discussed.Comment: 21 pages, 9 figures; v.4: final versio
International Consensus Recommendations for Eosinophilic Gastrointestinal Disease Nomenclature.
Substantial heterogeneity in terminology used for eosinophilic gastrointestinal diseases (EGIDs), particularly the catchall term "eosinophilic gastroenteritis," limits clinical and research advances. We aimed to achieve an international consensus for standardized EGID nomenclature.
This consensus process utilized Delphi methodology. An initial naming framework was proposed and refined in iterative fashion, then assessed in a first round of Delphi voting. Results were discussed in 2 consensus meetings, and the framework was updated and reassessed in a second Delphi vote, with a 70% threshold set for agreement.
Of 91 experts participating, 85 (93%) completed the first and 82 (90%) completed the second Delphi surveys. Consensus was reached on all but 2 statements. "EGID" was the preferred umbrella term for disorders of gastrointestinal (GI) tract eosinophilic inflammation in the absence of secondary causes (100% agreement). Involved GI tract segments will be named specifically and use an "Eo" abbreviation convention: eosinophilic gastritis (now abbreviated EoG), eosinophilic enteritis (EoN), and eosinophilic colitis (EoC). The term "eosinophilic gastroenteritis" is no longer preferred as the overall name (96% agreement). When >2 GI tract areas are involved, the name should reflect all of the involved areas.
This international process resulted in consensus for updated EGID nomenclature for both clinical and research use. EGID will be the umbrella term, rather than "eosinophilic gastroenteritis," and specific naming conventions by location of GI tract involvement are recommended. As more data are developed, this framework can be updated to reflect best practices and the underlying science