108 research outputs found

    Magnetisation and transport current loss of a BSCCO/Ag tape in an external AC magnetic field carrying an AC transport current

    Get PDF
    In practical applications, BSCCO/Ag tapes are exposed to external AC magnetic field and fed with an AC transport current. The total AC loss can be separated in two contributions: first, the transport current loss influenced by an external AC magnetic field, and second, the magnetisation loss that depends on the transport current running through the conductor. In this paper the total AC loss is considered and the role of the electric and magnetic components is compared. This comparison is made with an available analytical model for the AC loss in an infinite slab and verified experimentally for a BSCCO/Ag tape conductor. For small transport currents the magnetisation loss dominates the total loss. When the current increases, a field dependent crossover occurs, after which the transport current loss also plays a role. Qualitatively the measurements can be described well in terms of the critical state model. For magnetic field parallel to the wide side of the conductor the CSM for an infinite slab describes the measurements also quantitativel

    Limits to the critical current in Bi2Sr2Ca2Cu3Ox tape conductors: The parallel path model

    Get PDF
    An extensive overview of a model that describes current flow and dissipation in high-quality Bi2Sr2Ca2Cu3Ox superconducting tapes is provided. The parallel path model is based on a superconducting current running in two distinct parallel paths. One of the current paths is formed by grains that are connected at angles below 4°. Dissipation in this strongly linked backbone occurs within the grains and is well described by classical flux-creep theory. The other current path, the weakly linked network, is formed by superconducting grains that are connected at intermediate angles (4°–8°) where dissipation occurs at the grain boundaries. However, grain boundary dissipation in this weakly linked current path does not occur through Josephson weak links, but just as in the strongly linked backbone, is well described by classical flux creep. The results of several experiments on Bi2Sr2Ca2Cu3Ox tapes and single-grained powders that strongly support the parallel path model are presented. The critical current density of Bi2Sr2Ca2Cu3Ox tapes can be scaled as a function of magnetic field angle over the temperature range from 15 K to 77 K. Expressions based on classical flux creep are introduced to describe the dependence of the critical current density of Bi2Sr2Ca2Cu3Ox tapes on the magnetic field and temperature

    Comparing powder magnetization and transport critical current of Bi,Pb(2223) tapes

    Get PDF
    The magnetic field dependence of the critical current in (Bi,Pb)/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub 10+x/ tapes is compared with the magnetization response of isolated grains extracted from the tapes. Special attention is paid to the low-field behavior. The goal of the experiment is to test the widely-used hypothesis that current paths in these tapes contain both weak- and strong- linked branches, which in low field act in parallel. The data agree with this hypothesis; at temperatures above 50 K the powder magnetization drops off exponentially from the self-field to the irreversibility field, while the transport and magnetization currents in the intact tapes show an extra low-field component. Below 50 K the powder behavior becomes less straightforward, but the parallel-path picture in the tapes still holds

    Strain effects in high temperature superconductors investigated with magneto-optical imaging

    Get PDF
    In order to determine the influence of intermediate deformation steps on the mechanical behavior of Bi-based tapes, the effect of longitudinal applied strain is investigated by means of magneto-optical imaging. The strain is applied in a helium flow-cryostat. Cracks appear soon after the critical current in Bi-based tapes is degraded. All filaments form multiple cracks that grow into tape-wide cracks, running from one filament to the next. The crack location is not caused by stress concentrations in the matrix, but by the mechanically weak colony boundaries. Because of the absence of intermediate rolling steps in the production of Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub x/ tapes, a different crack structure is observed compared to Bi/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub x/ tapes. The relation between the critical current and the formation of cracks is studied. The degradation in critical current before the critical strain is reached may be caused by microcracks that remain undetected by magneto-optical imaging. The influence of strain on the microstructure of YBa/sub 2/Cu/sub 3/O/sub x/ coated conductors is also investigated with magneto-optical imaging. The formation of cracks is believed to be determined by the nickel substrate and related to the Ni-grain size

    Critical current versus strain research at the University of Twente

    Get PDF
    At the University of Twente a U-shaped spring has been used to investigate the mechanical properties of a large variety of superconducting tapes and wires. Several mechanisms are responsible for the degradation of critical current as a function of applied strain. A change in its intrinsic parameters causes a reversible critical current dependence in Nb3Sn. The critical current reaches a maximum at a wire-dependent tensile strain level, and decreases when this tensile strain is either released or further increased. In Bi-based tapes the critical current is virtually insensitive to tensile strain up to a sample-dependent irreversible strain limit. When this limit is exceeded, the critical current decreases steeply and irreversibly. This behaviour is attributed to microstructural damage to the filaments. This cracking of the filaments is verified by a magneto-optical strain experiment. Recent experiments suggest that in MgB2 the degradation of critical current is caused by a change in intrinsic properties and damage to the microstructure. Magneto-optical imaging can be used to investigate the influence of applied strain on the microstructure of MgB2, as is done successfully with Bi-based tapes. In all these conductors the thermal precompression of the filaments plays an important role. In Nb3Sn it determines the position of the maximum and in Bi-based and MgB2 conductors it is closely related to the irreversible strain limit

    Mammary gland tumor promotion by chronic administration of IGF1 and the insulin analogue AspB10 in the p53R270H/âșWAPCre mouse model

    Get PDF
    Insulin analogues are structurally modified molecules with altered pharmaco-kinetic and -dynamic properties compared to regular human insulin used by diabetic patients. While these compounds are tested for undesired mitogenic effects, an epidemiological discussion is ongoing regarding an association between insulin analogue therapy and increased cancer incidence, including breast cancer. Standard in vivo rodent carcinogenesis assays do not pick up this possible increased carcinogenic potential. Here we studied the role of insulin analogues in breast cancer development. For this we used the human relevant mammary gland specific p53R270H/âșWAPCre mouse model. Animals received life long repeated treatment with four different insulin (-like) molecules: normal insulin, insulin glargine, insulin X10 (AspB10) or insulin-like growth factor 1 (IGF1). Insulin-like molecules with strong mitogenic signaling, insulin X10 and IGF1, significantly decreased the time for tumor development. Yet, insulin glargine and normal insulin, did not significantly decrease the latency time for (mammary gland) tumor development. The majority of tumors had an epithelial to mesenchymal transition phenotype (EMT), irrespective of treatment condition. Enhanced extracellular signaling related kinase (Erk) or serine/threonine kinase (Akt) mitogenic signaling was in particular present in tumors from the insulin X10 and IGF1 treatment groups. These data indicate that insulin-like molecules with enhanced mitogenic signaling increase the risk of breast cancer development. Moreover, the use of a tissue specific cancer model, like the p53R270H/âșWAPCre mouse model, is relevant to assess the intrinsic pro-carcinogenic potential of mitogenic and non-mitogenic biologicals such as insulin analogues. INTRODUCTION METHODS RESULTS CONCLUSION

    Protocol for the STRONG trial: stereotactic body radiation therapy following chemotherapy for unresectable perihilar cholangiocarcinoma, a phase I feasibility study

    Get PDF
    INTRODUCTION: For patients with perihilar cholangiocarcinoma (CCA), surgery is the only treatment modality that can result in cure. Unfortunately, in the majority of these patients, the tumours are found to be unresectable at presentation due to either local invasive tumour growth or the presence of distant metastases. For patients with unresectable CCA, palliative chemotherapy is the standard treatment yielding an estimated median overall survival (OS) of 12-15.2 months. There is no evidence from randomised trials to support the use of stereotactic body radiation therapy (SBRT) for CCA. However, small and most often retrospective studies combining chemotherapy with SBRT have shown promising results with OS reaching up to 33-35 months.METHODS AND ANALYSIS: This study has been designed as a single-centre phase I feasibility trial and will investigate the addition of SBRT after standard chemotherapy in patients with unresectable perihilar CCA (T1-4 N0-1 M0). A total of six patients will be included. SBRT will be delivered in 15 fractions of 3-4.5 Gy (risk adapted). The primary objective of this study is to determine feasibility and toxicity. Secondary outcomes include local tumour control, progression-free survival (PFS), OS and quality of life. Length of follow-up will be 2 years. As an ancillary study, the personalised effects of radiotherapy will be measured in vitro, in patient-derived tumour and bile duct organoid cultures.ETHICS AND DISSEMINATION: Ethics approval for the STRONG trial has been granted by the Medical Ethics Committee of Erasmus MC Rotterdam, the Netherlands. It is estimated that all patients will be included between October 2017 and October 2018. The results of this study will be published in a peer-reviewed journal, and presented at national and international conferences.TRIAL REGISTRATION NUMBER: NCT03307538; Pre-results
    • 

    corecore